• 2022-06-08
    [img=342x230]17a55d942c5b590.png[/img]证明:如果把施加于系统的激励信号[tex=1.643x1.357]j6KcqgyprXeRIkkNI3dxdw==[/tex]按图那样分解为许多阶跃信号的叠加,设阶跃响应为[tex=1.643x1.357]n5qXYg45eJOfVXVn6Pm6Ng==[/tex],[tex=1.643x1.357]1kzNatkaii6Vy8isc2LWlA==[/tex]的初始值为[tex=2.357x1.357]FkzHMrJWzy3HSl6z7fzzjQ==[/tex],在[tex=0.714x1.143]XAJRHjyjbPRG+CPMSCNMPA==[/tex]时刻阶跃信号的幅度为[tex=3.071x1.357]NAUdFeUdLZs2JTxUSmcbLu7/aZTDFOQA8TwphtHqmX3877ERLb/4aaQ7+374CD3F[/tex]。试写出以阶跃响应的叠加取和而得到的系统响应近似式;证明,当取[tex=3.143x1.214]ivk7xrHHR5HWzeejNvtzH8TbhG8yX5VKatcWI71etpI=[/tex]的极限时,响应[tex=1.643x1.357]dNUh4YEmlbswOFiVA3wyRg==[/tex]的表示式为[tex=15.643x2.929]nZnK3QSQngllCLxpdIGFJixNOaRwmUt0i7r46ipcpNuc2GwcWoeMixVsCbnhOrUS0pos+PjrinhBLjqW8hkvGd8JKyXM8Pp/D+Qb4el0GwCWZSyMXiw1ixHywyRLjg72shIxTKT5gVRgRKaRSNC6BQ==[/tex][此式称为杜阿美尔积分]
  • 举一反三