若 $x^3$ 是 $f(x)$ 的一个原函数,则 $f''(x)=$( ).
A: $6x$
B: $3x^2$
C: $6$
D: $0$
A: $6x$
B: $3x^2$
C: $6$
D: $0$
举一反三
- 函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
- 设$f(x)$是三次首一多项式。若$x-1$除$f(x)$余 $1$,$x-2$除$f(x)$余 $2$,$x-3$除$f(x)$余 $3$,则 $f(x)$ =( )。 A: $x^{3}-6x^{2}+12x-6$; B: $x^{3}-6x^{2}+11x-6$; C: $x^{3}-5x^{2}+12x-6$; D: $x^{3}-6x^{2}+12x-5$.
- 设f(x)的一个原函数为F(x),则∫f(3x)dx=() A: F(3x)+C B: 3F(3x)+C C: F(x/3)+C D: 1/3F(3x)+C
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 若sin3x为f(x)的一个原函数,则f(x)=A.3cos(3x)