• 2022-06-09
    设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]可导,且[tex=3.929x1.286]rry4HS9j03SSzVB9RUT23Q==[/tex]。曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]([tex=2.357x1.286]qp1mMhMi7/RXytudIwJi8A==[/tex])经过坐标原点[tex=0.786x1.286]/aLPP1sXG9WQPxIsGVtWrg==[/tex],其上任意一点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]处的切线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴交于[tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex],又[tex=1.857x1.286]1+HEaQOQidhevgGS+vzRCA==[/tex]垂直[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴于点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]。已知由曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex],直线[tex=1.857x1.286]1+HEaQOQidhevgGS+vzRCA==[/tex]以及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围图形的面积与[tex=3.429x1.286]qibWguSxm+dL9yvgbvPQChNyqmA02j7kdcuoW6itmdg=[/tex]的面积之比恒为3:2,求满足上述条件的曲线的方程。
  • [tex=3.571x1.286]OjpwWHx5ki+LJI2XUHFxYQ==[/tex]([tex=2.571x1.286]XXYS5kWgCihZqO2xRxKBKQ==[/tex])

    举一反三

    内容

    • 0

      写出由下列条件确定的曲线所满足的微分方程:(1) 曲线在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处的切线的斜率等于该点横坐标的平方;(2) 曲线上点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点为 [tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]DxkaqxrqEWa0dZ+z/jyakw==[/tex]被[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 轴平分。

    • 1

      给定直角坐标系,设[tex=3.929x1.286]dcqivGlrP9K/o4cEBxywizKQAsq3jmXeBLGirGDzucU=[/tex],求[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]分别关于[tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]平面,[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴与原点的对称点的坐标。

    • 2

      求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]

    • 3

      设位于第一象限的曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]过点[tex=3.429x2.214]svxlIEBXdNxoqp6wzeigQBhZak6lSnabP7YC5AuQE7OH7PGQAXJ6MVDyIv1rIvWb[/tex],其上任意一点[tex=3.0x1.286]kyujQA9JEEfOzSysFBnMcw==[/tex]处的法线与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的交点为[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]+40+xgx+PPxliwZt1F/RBA==[/tex]被[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴平分。(I)求曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的方程;(II)已知曲线[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex]在[tex=2.071x1.286]dE9QZiXxivv7bu3TxEuD0A==[/tex]上的弧长为[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex],试用[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]表示曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的弧长[tex=0.5x1.286]r65Ank8E1dV+BtDCLn5S+w==[/tex]。(本题满分12分)

    • 4

      已知点[tex=8.857x1.286]Cjo/JtXMrS9x982Ww+RJulRwvHwTTZza4DGVTDSPebI=[/tex],点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]在[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴上,且[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]到[tex=2.5x1.286]2RUiDci9WF8R0kLIZXKikQ==[/tex]两点的距离相等,则[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]的横坐标是 未知类型:{'options': ['[tex=1.143x2.0]Li611Zu+UmqjEjW14D9bRDBehbpS74wLekgzhInNogI=[/tex]', '2', '0', '-1', '-4'], 'type': 102}