• 2022-06-09
    设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]可导,且[tex=3.929x1.286]rry4HS9j03SSzVB9RUT23Q==[/tex]。曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]([tex=2.357x1.286]qp1mMhMi7/RXytudIwJi8A==[/tex])经过坐标原点[tex=0.786x1.286]/aLPP1sXG9WQPxIsGVtWrg==[/tex],其上任意一点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]处的切线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴交于[tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex],又[tex=1.857x1.286]1+HEaQOQidhevgGS+vzRCA==[/tex]垂直[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴于点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]。已知由曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex],直线[tex=1.857x1.286]1+HEaQOQidhevgGS+vzRCA==[/tex]以及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围图形的面积与[tex=3.429x1.286]qibWguSxm+dL9yvgbvPQChNyqmA02j7kdcuoW6itmdg=[/tex]的面积之比恒为3:2,求满足上述条件的曲线的方程。
  • 举一反三