设由抛物线 [tex=5.214x1.429]v+j6q5U5cfZh+RKEDWSqNxaT4OO0p7vrTJvwQ+b9PF0=[/tex] 轴和直线 [tex=4.786x1.357]B/8Y3pdXsp7cgB/UOElIcQ==[/tex]所围图形的面积是仅由抛物线 [tex=4.143x1.429]pIWh6A1cn7l8Pp992ZRnEw==[/tex]及直线[tex=1.714x1.214]nlluRSkG4N2Mv5OIMz+R+g==[/tex]所围图形面积的一半,求 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的值.
设 [tex=2.0x1.214]7u1R7fGl8Yctnv3MsUJkYQ==[/tex]与拖物线的两个交点的[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴坐标是 [tex=12.571x1.5]Mq2d55FkvBPanPemTJsYMRr3wS53KDXAlGE+jSAccuxie+Z6XZXfMwqccGfKeeAJ[/tex]所以 [tex=12.929x3.071]m6jnqY1EqbTk+KZJ/0iBhW3qLiV0u6QJIHA6cUCT4NlJf0fH5ZXpEMY2GlQL71pSZIisGTRslVxrr3sCPCWVSom1W9O1EQOoeUfJPamYLlA=[/tex][tex=12.0x5.214]rF3uhst6cHB5lHrvg3hp0ypIDcKrKkcwC+lJssX36oTJMSU2EOBqEvlZ0ZUMgsZNefHmQwPFk2wUYK5VLWBP48s6PIOTA7WdGXtyNrRbgYwQVgWKiRciw4FEq5uAlUuI2vCZPbCbczX47L6nARWUjIeOPOZesHdY35SyavLbNg4bjSUP3PmwJ+eDmZY3S6i8[/tex][tex=12.143x2.929]4ZoE5kRWfkPpCjk1D4mnxcQVpHtN1nRLRH3mIyiRlluGzTjujJ2/exgm7xDlxvesYhtIQNYwy9/LmHD/WxcJsg==[/tex][tex=15.143x4.786]u6hvwQYxZtjS/N64CC8dUnlGhQzIoBStKRJ7uybC/UtR1FCFVtKdF1Wbo4Q7NtJND+ozrpMDHV4SJ0qAvS2Wgq33qBnkWmayGyoa98HwEjrN/M79iCifnUA9ddBVyv4yzyNEEPBf+zuoT6TGigngfpVj+6JVLwBmGsGKBzYG9bPsg2UmJ1BOYgd5o6I5gdnScDtEHnHk9dNAS9cuQCT72Q==[/tex]又因为 [tex=3.5x2.357]0/Xl0U8pNmAxXID/o2AcPb/rHL9hOne9IoIDcrRJ1ZA=[/tex]所以 [tex=23.143x2.786]N8Dd3ZH+VL0I6ABJ9aR1wypBnZtBuN382Q7BsVju0mQuO6vbrRITMf1J62oD6rtpFAdG9rPZvROX0yGoBgMsFORug9RiTIl09Cu60gpq0wbLp4wpV+y4MfZ2o0fYfgpgIVOMF6W9TZav9MdvPW+vyc70Pk7wEao3VIloBIPrtq2vv82uLJfmrDVD3NMzfEX7[/tex][tex=23.286x7.214]N8Dd3ZH+VL0I6ABJ9aR1w/zAOuItGJffdtdLIu607mwtzLee2h31+NkDv+YEVRLZ9Uv2u/80sl0LlStYsKspSpQ9oJAoodiKKJAPyHZ/Vey9mL/GKNXVEBBiNCBTB87SLfAG08fhZlOrndFgfPIbERYHiO+Y49O8VZWFhixrFWystp+Nz6IJ1cQ1lZbnEUWwMtAlrBW3vgfZrGzEVxyEjh1kcOp/BmoPXkNMrVS7FqCntRK5+Wue3RdtC0lctgZwCLRuKkixtNlI3wlnvKw4mp0pH6DYlHiIz4zdjLXsIRkZL04hCBBD+H+TORV+UvqCJy09PA6Y5JL0Wmh4vIWFuXF1FSetykJAl7gdAx53MJjmmuUIg0WJB+B37fU5KInOGfnnJVCib1LVmeNCAlyagg5wgTWP8c1+KzJDrd7Kuo4=[/tex]解之得: [tex=3.571x2.357]PkSfTrAgVxbFPYKk9BwiYa2nmMmHICs7ALK/sXkttdE=[/tex]
举一反三
- 设由抛物线[tex=4.143x1.429]L4251hHsT+GcIF60f3niwA==[/tex],[tex=0.5x1.0]LQSmcMgqJM6GhH9AIdyAJg==[/tex]轴和直线[tex=4.786x1.357]B/8Y3pdXsp7cgB/UOElIcQ==[/tex]所围成图形的面积是仅由抛物线[tex=4.143x1.429]pIWh6A1cn7l8Pp992ZRnEw==[/tex] 与直线[tex=1.714x1.214]nlluRSkG4N2Mv5OIMz+R+g==[/tex]所围图形面积的一半,则[tex=1.214x1.0]NQwg71UJhse/Y3t96V3t8Q==[/tex][input=type:blank,size:4][/input]。
- 求由抛物线线 [tex=4.143x1.429]tl6ASpJZxXuR821uqMKJfQ==[/tex] 与直线 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形的面积.
- 求由抛物线 [tex=2.286x1.429]sJzNz4b9QKJGrjvihJMYaA==[/tex] 与直线 [tex=3.143x1.214]TUCDxkhnRxD1M1I0bY9Evg==[/tex][tex=1.786x1.0]+TELpvQ32XFMOcGv4B8o8A==[/tex] 所围平面图形的面积.
- 求由抛物线 [tex=4.143x1.429]dTkdVqHpd014mTz65ErxtQ==[/tex]与直线[tex=3.571x1.214]1ToHFIJeHksO8XVekRxMnA==[/tex]所围成的图形的面积;
- 求由抛物线 [tex=5.571x1.5]THpgoQcVzjosGdGSMZRNJw==[/tex]和与抛物线相切于 [tex=2.143x1.214]++uVVeJPnNU9bqn611Ekdw==[/tex]的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围图形的面积.
内容
- 0
求由抛物线[tex=2.786x1.429]UkfP67e9FepbHKgkEPFDeQ==[/tex]与[tex=3.571x1.429]9g4qfz4bZ2ytz1kN8H+Syw==[/tex]所围图形的面积。
- 1
求由抛物线[tex=2.786x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]和[tex=3.571x1.429]x2ulPC9h41k0fVEnCwicBQ==[/tex]所围图形的面积.
- 2
求下列曲线所围平面图形面积:抛物线[tex=3.286x1.5]e2qj6QrY6S/SlaS4pe4RYA==[/tex]与直线[tex=5.429x1.214]CNZ1jFsQX6OobaTSUlJ3VA==[/tex]
- 3
求由曲线 [tex=6.214x1.429]nmMrpfP5lnx43wh1+5E5DU5wvyjCmzqi4mcOhCLlohc=[/tex] 及直线[tex=4.929x1.214]UDIRXL6qhap9Zm0X4c5Mng==[/tex]所围图形的面积.
- 4
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?