求下面函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间[tex=2.0x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上的一次最佳平方逼近多项式。[tex=9.714x1.357]AMj3zzDHBEAhBLbx2VoctzKfdyN9GNS2FS6RQ5jNlkA=[/tex]
举一反三
- 试分别求函数[tex=5.929x1.643]fxDGdnq1lBj5l3WzRHXLGL/MwU1AGl8HrbvGg6XZp4g=[/tex]在区间[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上的一次最佳一致逼近多项式和一次最佳平方逼近多项式.
- 求函数[tex=3.643x1.5]/kZa3yFdGcUsqMqT6OM0uQ==[/tex]在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的二次最佳平方逼近多项式。
- 求在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上带权[tex=3.286x1.357]k22n/2OxVjm9GodIMDaAIQ==[/tex]正交的一次和二次多项式,并利用它们求[tex=3.643x1.5]97GLWK9CsZzklXGrzk8xuw==[/tex]在[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上的二次最佳平方逼近多项式。
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可积,证明:函数[tex=7.357x2.643]uYQK6nKkJz0ye+R4MF1A/mAXhrEzMy80yl/ssuA5hkMrouc7XU3U9Ux1coDRcYuk[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上连续。
- 求函数[tex=5.714x1.357]69eaGuwMd8i67sdfDr+RtJXFa7WZxmTEGCFx2l4iAKA=[/tex]在区间[tex=2.786x1.357]NnFGXMGHoDtnxHWDnCGAww==[/tex]上的三次最佳平方逼近多项式。