举一反三
- [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的线性变换. 1) 若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的某组基下矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是某多项式[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]的伴侣阵,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最 小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]. 2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最高次的不变因子是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
- 求下列线性变换在所指定基下的矩阵:在空间[tex=2.214x1.357]RFwDoYxrXrc4aqxH0AQ83o9WXoksKVXERM/Il35Oy2U=[/tex]中,设变换[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex] 为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex]试求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=18.571x2.357]47jSrsVFI3KBnyxUZLScwFZ1rBrdBlbRI3rSNCV8KDF2HheXvdJ6InueImPcvT1vLNI7X7Z76wFMg361L06xHqYlQCxiUn31W5zybOHz9/Y=[/tex]下的矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex];
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 设[tex=4.643x1.0]2bOOLS2qYWpFCMCkhOx7kWKBZXCHc0rkmUgF/O9obdwPxSggBAHYEkc4KmIt+owdgvolNqDVZJPv8y6xbkiCkQ==[/tex] 是四维线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一组基,已知线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵为[tex=9.714x4.786]dEdrC9SQsN/3Vx39SaFo4F4k4j2a4XW0+ki4qRfuccZ3acDq0FvL6o/bF+WQXPHLP+sqGWr3situWKRnWapkr5ed8utdPa1QDBnWmM4vMGRQAeNdtMkTuQmnXcxPCj9/o6UgHc6gwEhnkF/JDVCroXTvP7C5kUQ+7yYTMkDBfGg=[/tex]1) 求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的核与值域;2) 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的核中选一组基,把它扩充成[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一组基,并求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵;3) 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的值域中选一组基,把它扩充成[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的一组基,并求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵.
内容
- 0
已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 1
证明:(3)设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是不可数无限集合,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的可数子集,则[tex=4.929x1.357]5EJpnOUvrLEmq/er1vPLeWGTm2HKvi96vlv7X7myujk=[/tex]。
- 2
求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 3
进行 4 次独立重复试验,每次试验中事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生的概率为0.3,如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不发生,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]也不发生;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 1 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.4 ;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.6;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次以上,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]一定发生.求事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率.
- 4
已知[tex=10.786x1.357]oPxEQGciaJq0uWonaJqXssvTKx2aAMqoshLd51U2O4M=[/tex],若[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]相互独立,则[tex=3.0x1.357]cl60lRnHnAb2Fyha9FYNvw==[/tex] A: 1/2 B: 1/3 C: 2/3 D: 3/4