• 2022-06-19
    求下列线性变换在所指定基下的矩阵:在空间[tex=2.214x1.357]RFwDoYxrXrc4aqxH0AQ83o9WXoksKVXERM/Il35Oy2U=[/tex]中,设变换[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex] 为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex]试求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=18.571x2.357]47jSrsVFI3KBnyxUZLScwFZ1rBrdBlbRI3rSNCV8KDF2HheXvdJ6InueImPcvT1vLNI7X7Z76wFMg361L06xHqYlQCxiUn31W5zybOHz9/Y=[/tex]下的矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex];
  • 因为[tex=24.714x2.714]ze0fzInK9G7vpB5RWMMWnrBBsWYFsLGAney+g2tEBThQ8Z9HkErPeqR3KTMuPwncNX4erOjvd6tOi2LSzd6yeReMTxYW4btKqhRx9WfHQrkCqMCabJjm/7Uj81/AY2iIv7rEZ09IR0zd+KYeZGqK2JcQ7v1/Ms5u3XAANwt+yRuwKAOfYb0k7ghX9SOTkt7V[/tex],所以[tex=5.429x1.214]Y7NQ31UngVhWEB87sFuqtHe1WJzmhZZF1JP7RJKfR7c=[/tex][tex=1.571x1.214]vMLUB1aciUwP9L8nff0o2GU4gCjRwu+ri4dwslhz+A0=[/tex]=[tex=5.571x1.357]Yqmyd2BZ6ohMIawn8Nq7NeRGjo0SByL9YzD4wc/BxlM=[/tex][tex=23.857x2.714]sa8qDBPdZhlzo+2KSd/tmkeSw6WlRVgT9GOPMsrIofiFh1q65AE9X5M3OLo5bDJ7GyTo9xk1VRpVEvLQweoXWih+T8p/wZ5r4xPWPksUGkpGd/2FCMDSh7to2vq/JVjBqDifXoEzXY9tBw37gzGQ6g==[/tex][tex=19.714x2.714]tWUPQZ8n7rbEb6ujdLK3/fad6mQSaAtzOPRe3Df90M70GIyvpK2ETMYQSbPvt+bMRGsuUcnpvtkWKr9Pht2fJA==[/tex][tex=2.571x1.0]9i5TmSag+02+bSdehAixM27Aq1rD2p7+L2cOmVKs/+Y=[/tex],所以[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]在基[tex=5.929x1.0]4jmfpBYt0lJhFnXGJEFFairOoGmr1SWfHMG1i5UA5Hl6nzfbRBqp2s76ryHB36M/dn9RFDkeiogTM6p1escGqg==[/tex]下的矩阵为[tex=12.071x7.071]SG13E7iu2HdaLVWfWJMdauSlliogIQMpyhiB1oMcxOryQwTbHHqWSZBVP+21M7jSVjwayX+PsCrdFclRJU0rcNdfvrEfsXkft8+WgBl52wUyDsLTWwrHwU2PncZO1PjZGjFRv296Yqn8AW9eoMhvIC+tTu/KHy5an2gah0pBv3s=[/tex]

    举一反三

    内容

    • 0

      已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]

    • 1

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为3阶矩阵,满足[tex=14.214x1.357]jZXpielExdVq250XLqu7h6LuoRAFq0f0w0Z1fVS42B0=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值

    • 2

      [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的线性变换. 1) 若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的某组基下矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是某多项式[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]的伴侣阵,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最 小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]. 2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最高次的不变因子是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex].

    • 3

      set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}

    • 4

      已知[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2sjK5reBfyeNY2er5BSmUnP2bJk2RKrHcOTktn0jwS2dXnOq4wvcctaNp3MMzqUus1lKKm6qGoI6CMx/tFS3/bJZ8Yr04zVcm3wuDtHoJ6IW9[/tex],求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩=(    )。 未知类型:{'options': ['1', '2', '3', '4'], 'type': 102}