将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]张信纸分别标号[tex=4.5x1.214]IBt+E4JuWYAvc0ErUPh+8Q==[/tex],[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个信封也同样标号,今将每张信纸任意地装入一个信封,求“没有一个配对”及“恰有[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个配对”的概率(这里所谓配对是指信纸装入同样标号的信封).
举一反三
- 将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个球随机地放入分别标有号码[tex=4.5x1.214]GK+NSLRH8xaRJJ8iGzp8YhaLb1JrN4SkQAUcZkIx4uk=[/tex]的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个盒子中去,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示有球的盒子的最小标号,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律.
- 将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个球随机地放入[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个杯子中去(球和杯子都是可辨的),求恰有1个杯子空着的概率.
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数。证明:在任意一组[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个连续的正整数中恰好有1个被[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]整除。
- 将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的球放入[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 的盒子中,每个盒子只能放一个球,记[tex=18.429x2.429]mM1DVNhuu1ZJsgdDJkNvlwxaN7R5hIKvZ5UbBzEZmfp2UhP3Zq351VRzWEMRdm3uinSrcc7p8+nzmPsSIG54E2V/P5fGE3U4D9iuhcuHZRc9WTbUtJcvnTtZEQLtkmkk[/tex]且[tex=5.357x3.286]H17WeEMdvGiKmUaBv3UHlr+w908WeOAYwlNd4OXIYos=[/tex] 试证明:[tex=8.214x2.429]eSRIeOCe8BWNAn2F+8quczsQqvTV6vlqRvgkDNDaN3kDa1RFoMqnHRGBmlu3Vu2Cz2uspWlfB+TZynrVoyPcTXHUNzZUJpt0HOhK1iuQXI0=[/tex]
- 一个样本空间有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个事件,如果其中没有2个事件同时出现,求关于这[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个事件的并的概率公式。