证明:群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]仅有平凡子群的充分必要条件是[tex=3.071x1.357]lhn0XHWkDQjpgStNKz1WNg==[/tex] 或 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是素数阶循环群.
举一反三
- 证明:群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有非平凡子群的充分必要条件是[tex=3.071x1.357]xHviwcuNKPAAjtgsU6/TxQ==[/tex]或是素数阶循环群.
- 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有且仅有 3 个不同的子群,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 必为循环群,且[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶数为[tex=2.357x1.0]jFLnBRxb8B7Hy+eXhKLWag==[/tex] 为某 个素数.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?
- 证明,群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的两个子群的交集也是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群且其不同的子群有不同的阶,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群。