设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从区间 [tex=2.0x1.357]5YBtE2B7ypbhzIj+NnAnFA==[/tex] 上的均匀分布, [tex=2.357x1.071]kwUYHMrdA3slOWfW6t/wUg==[/tex] 未知, [tex=4.929x1.214]XDWY8W277fc34wAZTmyoXw2CMoxUOi8JVMGGM8sU+OE=[/tex]是取自 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的样本。 (1) 求 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的矩估计和极大似然估计量;(2) 上述两个估计量是否为无偏估计量,若不是,请修正为无偏估计量; (3) 问在(2)中两个无偏估计量哪一个更有效。
举一反三
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从[tex=2.214x1.357]edGNSsITty4G+sxahA7W4w==[/tex]上的均匀分布, [tex=11.143x1.5]4IEHF18kszRIMkRIDP6I2T/GXskbOD9qT4qp2GPUU9c=[/tex]是总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个样本观测值, (1) 试用矩估计法求总体均值、总体方差及参数 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的估计值; (2) 试用极大似然估计法求总体均值、总体方差及参数[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的估计值.
- 设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 设总体 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从 [tex=2.929x1.357]Blqq4OrkwzHSbJ0c+fZxNQ==[/tex] 分布,试验证:未知参数 [tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 的矩估计量是无偏估计量,[tex=0.5x1.0]3QKgXMFD1jh2Zp5MD3bSdA==[/tex] 的极大似然估计量是渐近无偏估计量。
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布[tex=22.429x1.571]6AwFxb1cedz1/zoBxnNTSB5Sf/UatOnwTmWSIaIYSkR5vKpI7itikycDk6tC0PLdlXuhCDU8EAMM/eK3vpylbubTUJexLsiWYy5MMD1WuAWTT7BgoHKKsze7aePO2fVb[/tex]为总体[tex=0.857x1.143]7n7oFVxukNBwo3UKa1adww==[/tex]的样本,试求参数[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的矩估计和极大似然估计.
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布,其分布律为[tex=15.071x1.5]I0ppBsVEbqi/QknfLlBfgR56BxALHrgDreFk2dPH8ImWNkzm4laoAOEAN6q9EyvYaZn7NTqWADYFC8GcpyauFg==[/tex]求参数[tex=5.5x1.357]AUpIYBw8j5+Y6CTEPkdUag==[/tex]的矩估计和最大似然估计.