• 2022-05-29
    设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从区间 [tex=2.0x1.357]5YBtE2B7ypbhzIj+NnAnFA==[/tex] 上的均匀分布, [tex=2.357x1.071]kwUYHMrdA3slOWfW6t/wUg==[/tex] 未知, [tex=4.929x1.214]XDWY8W277fc34wAZTmyoXw2CMoxUOi8JVMGGM8sU+OE=[/tex]是取自 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的样本。 (1) 求 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的矩估计和极大似然估计量;(2) 上述两个估计量是否为无偏估计量,若不是,请修正为无偏估计量; (3) 问在(2)中两个无偏估计量哪一个更有效。
  • (1) 先求矩估计 [tex=6.286x3.714]pmbM/wRDgxXqBNMotpXbTYGr5StGZwTjCOomni+96C/LJdeuw82jTB1eqqQyk0Tm9twxGBikFIJi9Xeirfro+w==[/tex]所以 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的矩估计为 [tex=3.857x1.429]fsX2GgHeqdMu5/XIZhRIsChTZiS+8mq0vmaKs8utI8c=[/tex].再求极大似然估计.[tex=24.929x3.286]KjtnrQ0oesOkcZgk1l9a0P+5PyjGA/pSqHqW0LJpqbXoPW++phqeMRY/9xvZAw0cvgtuXugTgngl5Kvn553cR8TID6QarIxpZ/AeiCPjsC1J7ACojE4JRGzPfcPed0A+w2PdOGCkiiz1LG43VMsNMkXq5GrKroUTIY8mU+lKXies/NQ/xYnW+pEmEP2CuDdH6pt3fKdd6iBxlJ/yuByjjw==[/tex]所以 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的极大似然估计为 [tex=3.571x1.643]Bj2RV+Xz3qmkCiUXJdLuauHNnbuLc5jA41CcQcNtlhI=[/tex](2)[tex=19.143x1.286]VCCLAjLIPHjx8wIRSkXVCbjw7JaoSmpCA/Fxx/Z8Ajnrwicv5YtPFnOZ6t1KVkhb6/MIa6g+oLHnEKUZMt4JEslF71GHVJddC4lalQDs0d8=[/tex]可见矩估计是 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的无偏估计.为求 [tex=1.0x1.5]DYwUN26jSRkK+fsGAaG9tJJlTkMLDTCiQOuKCqliX6k=[/tex] 的数学期望,先求 [tex=3.571x1.643]DYwUN26jSRkK+fsGAaG9tGGBpKKQ8w8TQSbpOBSLQI0=[/tex] 的密度 [tex=2.643x1.357]rwcM2oyh52p/H5e01nW7DQ==[/tex]总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数为[tex=12.571x5.357]cUZjNsD2xfP/RtWxdJU2nCZdq/t80gZl6PA6BCWZwJx6UbuNvCg7HLd+70xowMqd/X9Dt6cV75uQoS6cXPcTc3wm/qWNAymtC+LD+vd47YcA+rGqoNaDSSdGSh0OxQp4j6td2eF4GbggyuNiA/D5rim44NLtLoZcc8kVV9p/VFQ=[/tex][tex=1.857x1.357]/Crw7T5EjyEF/W/RdiIx9A==[/tex] 的分布函数为[tex=6.143x1.357]8XA0VmqmTrweSZEbToPYBT2Szu64Nmxv2B+v5cNmQXQ=[/tex],所以[tex=23.786x1.286]ReBQ4lDx8BTPoWjRaWd8QnHiG40myOnLPPFDTND6q4Mk44IkKM+q0HwhzKotCWpGtFOxQJ4Dh20vI5LSFc/bnMO/i0sCIRt33AQKHrDJhyuamSR8Ms7tEYujRDV+iwmK[/tex][tex=13.714x4.5]luxnYXPz0zFuH3jflAxrJvTxy402Qoehb/U/7x+NW/pcwa8WtSgThr60HJHdw+wTu4PM+5XN6I7VgK7I/qdOZorWT+WIveQz4TkHl9ywCID/I9FCIKr4cMMKOpcOdA62LqkFDTVRZuHBT/A6zj0YlGlxbjJjU/38lACDmaFC4bY=[/tex][tex=35.071x8.929]XmfoY6HK9utcd0kQyvhX2AuCDHbElK64VJ/8HA1hZxd31QXoxBJd1qmNnqfST6pYfsXmRz7i0x7l6+OvJjRUpsDHHfmA5HZ4h6gObV7S+RGi9cFAc7VDvbmJXs3X/S0Nc2/RULzL7hWnfRyoQmNDh5uBXaOFmTLGlNj24FaG+jmsp//H/aV6NSZ3NdoMtpUp1NYzCRenkv4qBzcx7QUJtDhOd7mhskNOFyujHan7vQsKsekxFA8iprz5M8Ti2MbUc1bncraUKGDqLPvgfzB8YBDwJEgxLKPy1J5czIamo5CD0a/o22zuKChAQvC0ySrvh9Paa+kX0+Mb2bFMn/5mSBGUzGnBd95ZmN6cynnQbuq+lLw0YJahk1HMYDj4/stPn4FiZMupw2/kV7av4a+YCApjI2L9s46LWGLmcb04OBFhTwpnPM+beJXGWxNw4btIb2DJktN2Noc1+OMbdDflPn54NGJhnvvgnjgHo+lQ65c7wMCQFcQukix+xBRwM1/RLCoym6wMArhyA02dJnHnTd7SUYFiLuGHnkj0JTkrzVVQNAyZYaKDdXEsPnc7T+AGXAPByCjjdcwqkOsQlfBmaD42pNZmAxXzRve39e8FMYl6tGmanj7FPBEGpKIE/O4fob8D/fyFP0u8KJuXDozCv08qVOunf3Ho9FbZ65b6BbIDnDlJXQyL5v8mraJsXnfS[/tex]可见 [tex=1.0x1.5]DYwUN26jSRkK+fsGAaG9tJJlTkMLDTCiQOuKCqliX6k=[/tex] 不是 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的无偏估计, 若将 [tex=1.0x1.5]DYwUN26jSRkK+fsGAaG9tJJlTkMLDTCiQOuKCqliX6k=[/tex] 修正为 [tex=7.143x2.357]DYwUN26jSRkK+fsGAaG9tPJ4ILuW/yqEURpXzJQwMb0DFvEFFCTWYjxHKh0yrySVb1uB0K4iaOtE9kcLYPhVZScG2W18FaAl7ezEd/HvaPQ=[/tex] 则 [tex=1.0x1.286]d5rqU/HazHMP7Uxz92luyxE9tGDet8o6ZUvYDty8q8w=[/tex] 是 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的无偏估计。(3)[tex=15.5x2.143]0gZjX+wtC/iq1mK+tJCHXDctteQBDD97VT5iwU+dSzdoyqKtvJiDNC58x+6BY07pdxWSf/LtFTZ08Wh84iBGuTshuT/pya0ONX6p7WUxJpA=[/tex][tex=35.929x8.929]XmfoY6HK9utcd0kQyvhX2IZlY8SRpEKGDM/BbZssFew056Wcov9MvIGTZwYEpeKtZWfDhwF7bNnpx0wvZPI5z9N/6NHHJq/mzQKKCxqW1xamS2YpNJFjhNgBuw323xtnQWGiyH5kAysz1nml1PamVp2o90Q8u7thFvwnmRYntlPb4sOE2IuXOjTFffzJKCJ9F1aQkMYuCwqaIJFiiXnjkQIQkgIKN2B6hp3dMtgcuYU0YArU3q4rZHYMry316YzB8Mmyw2Bvwdkhq9Fhcc1HILAEG70hldM9hy3URRyPHnwefZbHrf/rERQLHl+TEpJdJP5fdf+5NrUUnuD6E9n23hzNXxXu0swmT8VVkVqWqqRpNWstUJ/+0Zga6nUZNhW2MQAtIJXvAtWrMGp0iw+m+LCj2ADLL6wI58JLpT9srNAGJJMswDZjXSg8sAGdKyBlJYdzr40d1OfzlCJAzalZl7dx0toulYB+IPvjdxIvYKFitUF/aU+8IR1D2HaiFA2PFF3pR4GAEZhdf31sxn11XD8TlJZVS72WeKwirazALxSnHpyswY4HXNoN6gQUBzG1FXBXvl8t4RgBkT4uiqhWItAmYwpRCDncveTLEGDYqSlAUXDXIqZxJX3ZRFJFKc16nQ2Dwx8S6vbow7RNbgvZzhWjyc/Ny5kp0pKyg3PMYuASl69d9YLG4m4VAHh6pAZJrtXa2kyV6hTRJ11G7Web0RFo3QKwWKyEm9uowiu/2KxpUPDR6tBC73RO5uyvEr21kkE3lmB3j3n87ifRALjY9w==[/tex][tex=36.857x7.429]6Tb+f48Hvs+h3+lcGwjMXxJkC/fCoYiq7HbKtaP6D3ZZ5G8gJPoMOt2Qp7Jzin/cYgG33nMXSji358Lr+bLeStxb2Lz9WK6Y2PQI7agHybIi5jbhluSzB0vi7kYeQ5eNCTTzd13hytAzRoR+I9q46/KsRhvX25MBdwpfGyZSpUDOJMzBCccwifs5uaXLHmFAGf5eMMcjdMMruwqcJnjxU2sLwdxfxWfAbOgoHfUPmAZ1zmXcyF8xU4SUpJBdvD4EBwUTDNKIuytkF6pFXef9oEzB2FlTMTbbgWq2h+5jkyPHmd++KeJTjvzCjczcgBf6DPg2Ep/QTezTcfeilyBGc7ThMYjA0cmuI4vW4gq5q1MYsVsfG0UkE2JI0Nq1IDGh1cKfUDiauOCebR7O0n6T6UEbg9Mf6hfBstzvLjWJ5Rl0e5LUaYbaLddIRf6D5QcXriMXPm8yYLa5vEQcShsWxOuMYsizC3xaO3iJcNlj+fE1CbJvjIZt35XwXwoiNS8tEqALFmGURJI995hECGOXLfkWBKK/Erlgk63R6fUpjK0=[/tex][tex=30.643x5.143]6Tb+f48Hvs+h3+lcGwjMX55vfa4K8cuU3cZcERvkKOh1Fhdv8ANce6v4yhpvQgXauUHb2ZbdhBLX7LbKrzFf20Vj04ro+c/BXOQR5KQC89fZwAd/aMM9jfYeMvboo5+waKcUMkGQlo+cIzOZb9xW9RK3kt1PU+TDXLhDplTOrT4YNCLIOZJymwf2QS+038bwiWm0czygqBGWhiXID3RxNzW4xad3FjyWreD76BXELHPh68Gb9xsiWYM8soL4LWM8BGkj9Mprgo2iEu7Hop6y13AiOxnkt13Sb/7S/euLUOoPDYdWweuwvNiVNxFnFRgVTVyRrFGJscb6vdvgRLgVWx4PKCEP9T8J5g1QDQ4cbjNKyg1bzdKYmeuTIENeGASJd9VO3/gLeAUskjTK+OdIDbOuN6jU//Izm6fetB2FjS/LDhYMtqX359zAP0O9wOfRoELaY6ONDj3vuTUsmp7hHA==[/tex]故[tex=1.0x1.286]d5rqU/HazHMP7Uxz92luyxE9tGDet8o6ZUvYDty8q8w=[/tex] 较 [tex=1.0x1.5]DYwUN26jSRkK+fsGAaG9tJJlTkMLDTCiQOuKCqliX6k=[/tex] 更有效.

    举一反三

    内容

    • 0

      设 [tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个样本,总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从几何分布,其分布律为 [tex=17.857x1.286]JKAm9afeOS+JY1Ct3SQhygQZ7XK+nQUvWc5KjhNvOVd9ymuu1lG9zOLcr4GgeV+a[/tex],其中 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 未知,[tex=4.5x1.214]xfn/0lVliMO+HsrMEoBSOw==[/tex] 试求 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的矩估计量。

    • 1

      设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从二项分布[tex=3.286x1.357]/pjksCQcN3e4aAYfJKGgjw==[/tex]其中[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]已知而[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]未知,试求[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的矩估计和最大似然估计.

    • 2

      设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从几何分布,即[tex=18.143x1.5]BeCwVpp2ELzJ3IyUCk1Zl1JotbcSUnEF9YtSwPzyW4RsqyBeCTfWoDvrrFKioSxzPFqsB7dUwmnmWnm4HVd7a+Dudbj9MuxBP3Kxz4fCooA=[/tex]其中,参数 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 的先验分布为均匀分布 [tex=2.929x1.357]VwrdqB6Iojz/dk+/8CWYmw==[/tex]。[tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex] 若只对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 作一次观察,观察值为 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex], 求 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的贝叶斯估计。[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex]若对[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]作三次观察,观察值为[tex=2.429x1.214]Xr3JPt8XubIzwyo6pIHnfQ==[/tex], 求 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的贝叶斯估计。

    • 3

      假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?

    • 4

      假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?