(ylnx-2)ydx=xdy是伯努利方程。
(ylnx-2)ydx=xdy是伯努利方程。
微分方程xdy/dx+y=ydy/dx的通解为____。
微分方程xdy/dx+y=ydy/dx的通解为____。
方程xdy/dx=yln(y/x)的通解为____。
方程xdy/dx=yln(y/x)的通解为____。
如果简单正向闭曲线L所围成区域的面积为S,那么$S = (\quad ).$ A: $\dfrac{1}{2}\oint_L {xdx - ydy} $ B: $\dfrac{1}{2}\oint_L {ydy - xdx} $ C: $\dfrac{1}{2}\oint_L {ydx - xdy} $ D: $\dfrac{1}{2}\oint_L {xdy - ydx} $
如果简单正向闭曲线L所围成区域的面积为S,那么$S = (\quad ).$ A: $\dfrac{1}{2}\oint_L {xdx - ydy} $ B: $\dfrac{1}{2}\oint_L {ydy - xdx} $ C: $\dfrac{1}{2}\oint_L {ydx - xdy} $ D: $\dfrac{1}{2}\oint_L {xdy - ydx} $
微分方程xdy/dx-y=0的通解是()。 A: y=x B: y=cx C: y=x+c D: y=x+1
微分方程xdy/dx-y=0的通解是()。 A: y=x B: y=cx C: y=x+c D: y=x+1
微分方程xdy/dx-y=0过点(1.2),特解是()。 A: y=x B: y=x+2 C: y=x+k D: y=2x
微分方程xdy/dx-y=0过点(1.2),特解是()。 A: y=x B: y=x+2 C: y=x+k D: y=2x
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y
方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=1 B: ln(y/x)=Cx+1 C: ln(y/x)=Cx<sup>2</sup>+1 D: ln(y/x)=Cx<sup>3</sup>+1
方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=1 B: ln(y/x)=Cx+1 C: ln(y/x)=Cx<sup>2</sup>+1 D: ln(y/x)=Cx<sup>3</sup>+1
方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=Cx-1 B: ln(y/x)=Cx<sup>2</sup>+1 C: ln(y/x)=Cx<sup>2</sup>+x D: ln(y/x)=Cx+1
方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=Cx-1 B: ln(y/x)=Cx<sup>2</sup>+1 C: ln(y/x)=Cx<sup>2</sup>+x D: ln(y/x)=Cx+1
计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2
计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2