• 2022-06-06 问题

    已知(x+2)2+|y一1/3|=0,求2(xy一5xy2)一(2xy2一xy)

    已知(x+2)2+|y一1/3|=0,求2(xy一5xy2)一(2xy2一xy)

  • 2021-04-14 问题

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

  • 2022-06-09 问题

    图示应力状态,按第三强度理论校核,强度条件为( )。[img=228x172]180335df4ee991b.png[/img] A: τxy≤ [σ] B: √2τxy≤[σ] C: -√2τxy≤[σ] D: 2τxy≤[σ]

    图示应力状态,按第三强度理论校核,强度条件为( )。[img=228x172]180335df4ee991b.png[/img] A: τxy≤ [σ] B: √2τxy≤[σ] C: -√2τxy≤[σ] D: 2τxy≤[σ]

  • 2022-05-28 问题

    计算(xy的2次方+3)(xy的2次方)-2x(-x+y)

    计算(xy的2次方+3)(xy的2次方)-2x(-x+y)

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

  • 2022-06-16 问题

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

  • 2022-06-06 问题

    大整数乘法采用如下哪个XY?____ A: XY<br/>= ac 2^n<br/>+ ((a-c)(b-d)+ac+bd) 2^n/2<br/>+ bd B: XY<br/>= ac 2^n<br/>+ ((a+c)(b+d)-ac-bd) 2^n/2<br/>+ bd

    大整数乘法采用如下哪个XY?____ A: XY<br/>= ac 2^n<br/>+ ((a-c)(b-d)+ac+bd) 2^n/2<br/>+ bd B: XY<br/>= ac 2^n<br/>+ ((a+c)(b+d)-ac-bd) 2^n/2<br/>+ bd

  • 2022-06-06 问题

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

  • 1 2 3 4 5 6 7 8 9 10