估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
∫xe^(x^2)dx=( ) A: 1/2(e^(x^2)) B: 1/2(e^(x^2))+C C: -1/2(e^(x^2)) D: -1/2(e^(x^2))十C
设方阵 $A$ 满足 $A^2-2A+E=O,$ 则 $A^{-1}=$ ( ). A: $2-A$ B: $A-2E$ C: $A+E$ D: $2E-A$
设方阵 $A$ 满足 $A^2-2A+E=O,$ 则 $A^{-1}=$ ( ). A: $2-A$ B: $A-2E$ C: $A+E$ D: $2E-A$
成年人红细胞中的血红蛋白主要结构为()。 A: Aα2ε2 B: Bα2γ2 C: Cα2β2 D: Dβ2γ2 E: Eβ2ε2
成年人红细胞中的血红蛋白主要结构为()。 A: Aα2ε2 B: Bα2γ2 C: Cα2β2 D: Dβ2γ2 E: Eβ2ε2
HbF的结构为() A: Aα2β2 B: Bα2γ2 C: Cα2δ2 D: Dα2ε2 E: E以上都不是
HbF的结构为() A: Aα2β2 B: Bα2γ2 C: Cα2δ2 D: Dα2ε2 E: E以上都不是
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2
设X是一随机变量,E(X)=μ,DX=δ2(μ,δ2为常数)则对任意常数C,有( )。 A: E(X-C)2=E(X)2一C2 B: E(X-C)2=E(X-μ)2 C: E(X-C)2<E(X-μ)2 D: E(X-C)2≥E(X-μ)2
HbF的构成主要是() A: α2β2 B: α2δ2 C: ζ2ε2 D: α2γ2 E: ζ2γ2
HbF的构成主要是() A: α2β2 B: α2δ2 C: ζ2ε2 D: α2γ2 E: ζ2γ2
设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2