在平面\( xoz \)内一动点,它与原点的距离等于它与点\( (5, - 3,1) \)的距离,此动点的轨迹方程为( ) A: \( \left\{ {\matrix{ {10x - 2z - 35 = 0} \cr {y = 9} \cr } } \right. \) B: \( \left\{ {\matrix{ {10x + 2z - 35 = 0} \cr {y = 9} \cr } } \right. \) C: \( \left\{ {\matrix{ {10x - 2z + 35 = 0} \cr {y = 9} \cr } } \right. \) D: \( \left\{ {\matrix{ {10x + 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
在平面\( xoz \)内一动点,它与原点的距离等于它与点\( (5, - 3,1) \)的距离,此动点的轨迹方程为( ) A: \( \left\{ {\matrix{ {10x - 2z - 35 = 0} \cr {y = 9} \cr } } \right. \) B: \( \left\{ {\matrix{ {10x + 2z - 35 = 0} \cr {y = 9} \cr } } \right. \) C: \( \left\{ {\matrix{ {10x - 2z + 35 = 0} \cr {y = 9} \cr } } \right. \) D: \( \left\{ {\matrix{ {10x + 2z + 35 = 0} \cr {y = 9} \cr } } \right. \)
设矩阵\(A = \left( {\matrix{ \matrix{ x \cr 0 \cr y \cr} & \matrix{ 0 \cr 2 \cr 0 \cr} & \matrix{ y \cr 0 \cr - 2 \cr} \cr } } \right)\)的一个特征值为\(-3\),且\(A\)的三个特征值之积为\(-12\),则\(x =\)______
设矩阵\(A = \left( {\matrix{ \matrix{ x \cr 0 \cr y \cr} & \matrix{ 0 \cr 2 \cr 0 \cr} & \matrix{ y \cr 0 \cr - 2 \cr} \cr } } \right)\)的一个特征值为\(-3\),且\(A\)的三个特征值之积为\(-12\),则\(x =\)______
曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
以下程序的输出结果是______。A) 10 1 9 2 B) 9 8 7 6 C) 10 9 9 0 D) 10 10 9 1main( ){ int x=10,y=10,i; for(i=0;x>8;y=++i) printf("%d,%d ",x--,y);}
以下程序的输出结果是______。A) 10 1 9 2 B) 9 8 7 6 C) 10 9 9 0 D) 10 10 9 1main( ){ int x=10,y=10,i; for(i=0;x>8;y=++i) printf("%d,%d ",x--,y);}
以下程序的输出结果是___ main { int x=10,y=10,i; for(i=0;x>8;y=++i) printf("%d,%d ",x--,y);} A)10 ,1 9, 2 B)9, 8 7 ,6 C)10 ,9 9 ,0 D)10, 10 9 ,1
以下程序的输出结果是___ main { int x=10,y=10,i; for(i=0;x>8;y=++i) printf("%d,%d ",x--,y);} A)10 ,1 9, 2 B)9, 8 7 ,6 C)10 ,9 9 ,0 D)10, 10 9 ,1
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
如图理想二极管电路,其输出电压为( )V A: -6 B: 0 C: -9
如图理想二极管电路,其输出电压为( )V A: -6 B: 0 C: -9
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;(8)y(4)-2y〞+y=0;(9)y(4)+2y〞+y=0;(10)y(4)+3y〞-4y=0.
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;(8)y(4)-2y〞+y=0;(9)y(4)+2y〞+y=0;(10)y(4)+3y〞-4y=0.
设随机变量X,Y,Z相互独立,E(X)=5, E(Y)=7, E(Z)=9, V=XY-3Z,则E(V)=( ) A: 6 B: 8 C: 10 D: 12
设随机变量X,Y,Z相互独立,E(X)=5, E(Y)=7, E(Z)=9, V=XY-3Z,则E(V)=( ) A: 6 B: 8 C: 10 D: 12