求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;(8)y(4)-2y〞+y=0;(9)y(4)+2y〞+y=0;(10)y(4)+3y〞-4y=0.
举一反三
- 【单选题】以 为通解的微分方程为(): A. y〞-3y′-2y=0 B. y〞-3y′+2y=0 C. y〞+3y′+2y=0 D. y〞-2y′+y=0
- 以为特解的二阶线性常系数齐次微分方程是()。 A: y"-2y'-3y=0 B: y"+2y'-3y=0 C: y"-3y'+2y=0 D: y"-2y'-3y=0
- 以为特解的二阶线性常系数齐次微分方程是() A: y"-2y'-3y=0 B: y"+2y'-3y=0 C: y"-3y' +2y=0 D: y" +3y' +2y=0
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)