波动方程Cauchy问题的解与初始时刻每一点的值都有关
波动方程Cauchy问题的解与初始时刻每一点的值都有关
求下列波动方程 Cauchy 问题的解:[br][/br][tex=9.571x3.357]7EJHVCtO2IWq3KpdB+jQsteTgYKcO485vpVNkAgPUaZ19PeUucXr5pxanPWNBmKJuYjk7sHxeVe4rpYc9WTXuLi3RjtHQMhdnKrvcpPCrGZ12vI172EWQmhXY3oSjvhjh7vM983Necuno84bq/uQAcQqZjlfuSxdMg5KotWy5hg=[/tex]
求下列波动方程 Cauchy 问题的解:[br][/br][tex=9.571x3.357]7EJHVCtO2IWq3KpdB+jQsteTgYKcO485vpVNkAgPUaZ19PeUucXr5pxanPWNBmKJuYjk7sHxeVe4rpYc9WTXuLi3RjtHQMhdnKrvcpPCrGZ12vI172EWQmhXY3oSjvhjh7vM983Necuno84bq/uQAcQqZjlfuSxdMg5KotWy5hg=[/tex]
设 [tex=13.786x1.429]YHIKtHtTy6YeetIBukGWJ+JTwta6G3wlG5h31QW0nhlrgffU3l0ctFV4G6uv9hkKYv5PN0+4Jtgt+dfQKE5YShDRx13wgedTa2bYen+lK6mR2G3rBVEcgxS0/AI0UJsw1CAj7s9FcW1bMvliakUFFlYhmSW5cbbkx8UVuJwu5prR6VP3oqsx6HxvNR1FHieiY2hKfFB2nBLP/1Vtvoe+fQ==[/tex]. 试证[tex=34.643x6.357]V1D753We7vezsBlKQyfrUhwyt9YeFj5S249LygQ1sh+k+GLTfRQjd69LkfNrJo101GTJACX4E0nNXp5nsKs1uiHhey9XzmvSdl3Lwurv/R7q6UKa9hMk94Xh+99fZ5QENaGRm7VLF4DWzvLFkCjO3Ph//hH91keSpmV2ts4+TzgdPgrZONzbXNu5uecquTSdeBnB3TJ3L85o5KwYF9oqHDIg6C1hLj4Qgsykb+cCQ8M8LxyK8FIwTn7wS8GV0cXFWyzpxffMN+oQDdjeI4eMWMJV+vnzfzE7gHHE4TFWlXrQ7eOYYlZl9/hS974J2+v4YTKc/ZCRYcjHzpvYU38Vdk5ZVYxyPbejKhXoiiBlqEOnJSj9wt3goxBxCgHMaZp5lhUzWfAmZuwhKkEopB0PJM2B5BXffvYkFFulq6kLOhXZcjgr+dyt1gQWn99gu7kdxk8UwrxbGXG/wpfzFXpushaEpBECWPDGQK8ZX3JHxwwQeRagiA2IRTOuEa9iZW1x8HYCcLf5/qLDmEl8DgtqtH3i7S08yp9r322+Xg+SWYNVHDNJ6o7Yl0W7TuONv8ZKMJmkc0bWY9siGjfyyQUzNoPmlyu8B6ayX4lcBkuMKH8=[/tex]上式称为 Binet-Cauchy 公式.
设 [tex=13.786x1.429]YHIKtHtTy6YeetIBukGWJ+JTwta6G3wlG5h31QW0nhlrgffU3l0ctFV4G6uv9hkKYv5PN0+4Jtgt+dfQKE5YShDRx13wgedTa2bYen+lK6mR2G3rBVEcgxS0/AI0UJsw1CAj7s9FcW1bMvliakUFFlYhmSW5cbbkx8UVuJwu5prR6VP3oqsx6HxvNR1FHieiY2hKfFB2nBLP/1Vtvoe+fQ==[/tex]. 试证[tex=34.643x6.357]V1D753We7vezsBlKQyfrUhwyt9YeFj5S249LygQ1sh+k+GLTfRQjd69LkfNrJo101GTJACX4E0nNXp5nsKs1uiHhey9XzmvSdl3Lwurv/R7q6UKa9hMk94Xh+99fZ5QENaGRm7VLF4DWzvLFkCjO3Ph//hH91keSpmV2ts4+TzgdPgrZONzbXNu5uecquTSdeBnB3TJ3L85o5KwYF9oqHDIg6C1hLj4Qgsykb+cCQ8M8LxyK8FIwTn7wS8GV0cXFWyzpxffMN+oQDdjeI4eMWMJV+vnzfzE7gHHE4TFWlXrQ7eOYYlZl9/hS974J2+v4YTKc/ZCRYcjHzpvYU38Vdk5ZVYxyPbejKhXoiiBlqEOnJSj9wt3goxBxCgHMaZp5lhUzWfAmZuwhKkEopB0PJM2B5BXffvYkFFulq6kLOhXZcjgr+dyt1gQWn99gu7kdxk8UwrxbGXG/wpfzFXpushaEpBECWPDGQK8ZX3JHxwwQeRagiA2IRTOuEa9iZW1x8HYCcLf5/qLDmEl8DgtqtH3i7S08yp9r322+Xg+SWYNVHDNJ6o7Yl0W7TuONv8ZKMJmkc0bWY9siGjfyyQUzNoPmlyu8B6ayX4lcBkuMKH8=[/tex]上式称为 Binet-Cauchy 公式.
[br][/br]求下列波动方程 Cauchy 问题的解:[br][/br][tex=11.643x3.357]7EJHVCtO2IWq3KpdB+jQsteTgYKcO485vpVNkAgPUaZ19PeUucXr5pxanPWNBmKJuYjk7sHxeVe4rpYc9WTXuKOC/q+dZ4sxdT368varuQoMHqs5P37ga5r2VaMnEob4jeiaEU4ry0uWnTlWawQNkbKIKqgybY3f4DmrjT3mf4M=[/tex]
[br][/br]求下列波动方程 Cauchy 问题的解:[br][/br][tex=11.643x3.357]7EJHVCtO2IWq3KpdB+jQsteTgYKcO485vpVNkAgPUaZ19PeUucXr5pxanPWNBmKJuYjk7sHxeVe4rpYc9WTXuKOC/q+dZ4sxdT368varuQoMHqs5P37ga5r2VaMnEob4jeiaEU4ry0uWnTlWawQNkbKIKqgybY3f4DmrjT3mf4M=[/tex]
最早研究偏微分方程存在性理论的是哪位科学家? A: Bernoulli B: D'Alembert C: Fourier D: Cauchy
最早研究偏微分方程存在性理论的是哪位科学家? A: Bernoulli B: D'Alembert C: Fourier D: Cauchy
利用 Cauchy 准则,判别数列 [tex=2.071x1.286]y7nUQ5tKc1J52rIfCAGVl+AjVlS+9GHYNg0ynXMHL/A=[/tex] 的收敛性.[tex=6.786x2.714]8xrocyVsBc1Gm+hjcrGtfBvpYjPhGfsIvinBMMukjyDG3R5Ks/99a6MUvRFAIiIk[/tex] [tex=5.571x1.286]yrxqbq9Fo5LoBPgFKOwWKVEYoDBNNA4etAJlzTPGMkU=[/tex].
利用 Cauchy 准则,判别数列 [tex=2.071x1.286]y7nUQ5tKc1J52rIfCAGVl+AjVlS+9GHYNg0ynXMHL/A=[/tex] 的收敛性.[tex=6.786x2.714]8xrocyVsBc1Gm+hjcrGtfBvpYjPhGfsIvinBMMukjyDG3R5Ks/99a6MUvRFAIiIk[/tex] [tex=5.571x1.286]yrxqbq9Fo5LoBPgFKOwWKVEYoDBNNA4etAJlzTPGMkU=[/tex].
( )开创了一种以评估婴儿与其照料着之间的依恋关系的实验程序—陌生情景 A: Mary Ainsworth B: John Bowlby C: Wechsler D: Binet
( )开创了一种以评估婴儿与其照料着之间的依恋关系的实验程序—陌生情景 A: Mary Ainsworth B: John Bowlby C: Wechsler D: Binet
证明Cauchy恒等式:当[tex=2.5x1.143]zO9Fx5eNiwmDKAUfJb2c2Q==[/tex]时,有[tex=10.429x2.929]Fp3qzvUmkH15oVWFsxCJLIYMr9Sn5Lk7oqGIBuZyNobb87HFlohf9yXwBpcstHrZaKaWup9DPPaTJc8juy68Iv+whhKI00WOHBdtlb9IjcY8betMHRRZW323zHQniCvp[/tex][tex=10.571x2.929]Fp3qzvUmkH15oVWFsxCJLBzQt67hiTjzi/RhIHTY0jT7mwSvs0zTwvcNMwaOITKvH43s8thqzPMBk5nCO4uVRTbkuOIGJWut8QhSNl8E0JeSdG+heRm4dUYVmyIwnWvo[/tex][tex=14.929x2.286]8vZlY5Pv2FSuQFrNzers0kr+WyemKgVUdk6/fTRVIZiHxDw2Glv8mVT3Zi3uhD40llxldug/ZjckZm7DOOpyDVFJCQgP181HYQVhVFmwoSOkgZlkpILT9oS3u/7uGkQeFLQbCQ+NvRyE209eMnBP6Q==[/tex].
证明Cauchy恒等式:当[tex=2.5x1.143]zO9Fx5eNiwmDKAUfJb2c2Q==[/tex]时,有[tex=10.429x2.929]Fp3qzvUmkH15oVWFsxCJLIYMr9Sn5Lk7oqGIBuZyNobb87HFlohf9yXwBpcstHrZaKaWup9DPPaTJc8juy68Iv+whhKI00WOHBdtlb9IjcY8betMHRRZW323zHQniCvp[/tex][tex=10.571x2.929]Fp3qzvUmkH15oVWFsxCJLBzQt67hiTjzi/RhIHTY0jT7mwSvs0zTwvcNMwaOITKvH43s8thqzPMBk5nCO4uVRTbkuOIGJWut8QhSNl8E0JeSdG+heRm4dUYVmyIwnWvo[/tex][tex=14.929x2.286]8vZlY5Pv2FSuQFrNzers0kr+WyemKgVUdk6/fTRVIZiHxDw2Glv8mVT3Zi3uhD40llxldug/ZjckZm7DOOpyDVFJCQgP181HYQVhVFmwoSOkgZlkpILT9oS3u/7uGkQeFLQbCQ+NvRyE209eMnBP6Q==[/tex].
计算下列各复积分: [tex=8.143x2.714]vJVCkDDnr8Xcjq5KfV6ziWITLlWdNVndHVAoYGkedfOOr8oVVJKsnibgQzikItphQnIu3tCeBMieGQFXZ+HxgA==[/tex] 其中 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]为不通过 0 与 1 的周线. 若[tex=2.357x1.0]DiJR/9DW631uuahYoMJyLg==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部,而点 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的外部,利用 Cauchy 积分定理、Cauchy 积分公式与高阶求导公式来计算.
计算下列各复积分: [tex=8.143x2.714]vJVCkDDnr8Xcjq5KfV6ziWITLlWdNVndHVAoYGkedfOOr8oVVJKsnibgQzikItphQnIu3tCeBMieGQFXZ+HxgA==[/tex] 其中 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]为不通过 0 与 1 的周线. 若[tex=2.357x1.0]DiJR/9DW631uuahYoMJyLg==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部,而点 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的外部,利用 Cauchy 积分定理、Cauchy 积分公式与高阶求导公式来计算.
以下哪种有力测验适用于0-3岁的受试者 A: Stanford- Binet 智力量表 B: Wechsler 成人智力量表 C: Wechsler 儿童智力量表 D: Gesell 发展量表 E: 适应行为量表
以下哪种有力测验适用于0-3岁的受试者 A: Stanford- Binet 智力量表 B: Wechsler 成人智力量表 C: Wechsler 儿童智力量表 D: Gesell 发展量表 E: 适应行为量表