G04X2000,此段指令执行暂停2S。
G04X2000,此段指令执行暂停2S。
定义了数组seg[4]= {ox01,0x02,0x03,0x04}; 则seg[2] = ( )
定义了数组seg[4]= {ox01,0x02,0x03,0x04}; 则seg[2] = ( )
设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)
设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)
1,x%2!=02,(x%2==0)3,(x=x/282)==04,if(x%2)只有当x为偶数时,才是逻辑真的表达式
1,x%2!=02,(x%2==0)3,(x=x/282)==04,if(x%2)只有当x为偶数时,才是逻辑真的表达式
中国铁路提速的时间有哪些?() A: 1997/4/1 B: 1998/10/1 C: 2000/10/21 D: 2001/10/21 E: 2002/11/1 F: 2004/04/18 G: 2003/12/1
中国铁路提速的时间有哪些?() A: 1997/4/1 B: 1998/10/1 C: 2000/10/21 D: 2001/10/21 E: 2002/11/1 F: 2004/04/18 G: 2003/12/1
设f(x),g(x)在区间[a,b]上连续,且g(x) A: π∫ab[2m-f(x)+g(x)][f(x)-g(x)]dx B: π∫ab[2m-f(x)-g(x)][f(x)-g(x)]dx C: π∫ab[m-f(x)+g(x)][f(x)-g(x)]dx D: π∫ab[m-f(x)-g(x)][f(x)-g(x)]dx
设f(x),g(x)在区间[a,b]上连续,且g(x) A: π∫ab[2m-f(x)+g(x)][f(x)-g(x)]dx B: π∫ab[2m-f(x)-g(x)][f(x)-g(x)]dx C: π∫ab[m-f(x)+g(x)][f(x)-g(x)]dx D: π∫ab[m-f(x)-g(x)][f(x)-g(x)]dx
设函数f(x),g(x)是大于零的可导函数,且f'(x)g(x)-f(x)g'(x) A: f(x)g(b)>;f(b)g(x) B: f(x)g(a)>;f(a)g(x) C: f(x)g(x)>;f(a)g(a) D: f(x)g(x)>;f(b)g(b)
设函数f(x),g(x)是大于零的可导函数,且f'(x)g(x)-f(x)g'(x) A: f(x)g(b)>;f(b)g(x) B: f(x)g(a)>;f(a)g(x) C: f(x)g(x)>;f(a)g(a) D: f(x)g(x)>;f(b)g(b)
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有() A: f(x)g(b)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g()
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有() A: f(x)g(b)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g()
设f(x),g(x)(a<x<b)为大于零的可导函数,且f"(x)g(x)-f(x)g"(x)<0,则当a<x<b时,有______. A: f(x)g(x)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g(a)
设f(x),g(x)(a<x<b)为大于零的可导函数,且f"(x)g(x)-f(x)g"(x)<0,则当a<x<b时,有______. A: f(x)g(x)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g(a)
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。