设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dx∫y4—yf(x,y)dy=( ) A: ∫12dx∫14—xf(x,y)dy B: ∫12dx∫x4—xf(x,y)dy C: ∫12dx∫14—xf(x,y)dy D: ∫12dx∫y2f(x,y)dy
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dx∫y4—yf(x,y)dy=( ) A: ∫12dx∫14—xf(x,y)dy B: ∫12dx∫x4—xf(x,y)dy C: ∫12dx∫14—xf(x,y)dy D: ∫12dx∫y2f(x,y)dy
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02—yf(x,y)dx可写成( ) A: ∫02dx∫x2f(x,y)dy B: ∫01dx∫x2—yf(x,y)dy C: ∫01dx∫x2—xf(x,y)dy D: ∫01dx∫y2—yf(x,y)dy
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02—yf(x,y)dx可写成( ) A: ∫02dx∫x2f(x,y)dy B: ∫01dx∫x2—yf(x,y)dy C: ∫01dx∫x2—xf(x,y)dy D: ∫01dx∫y2—yf(x,y)dy
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy
设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy
函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
【单选题】求y= 的微分dy A. dy=2x dx B. dy=2x C. dy= dx D. dy=
【单选题】求y= 的微分dy A. dy=2x dx B. dy=2x C. dy= dx D. dy=
已知y=x3-x, 计算在x=2处当Dx等于1时, Dy=______ ,dy=______ ;当Dx等于0.1时, Dy=______ ,dy=______ ;当Dx等于0.01时, Dy=______ ,dy=______ ;
已知y=x3-x, 计算在x=2处当Dx等于1时, Dy=______ ,dy=______ ;当Dx等于0.1时, Dy=______ ,dy=______ ;当Dx等于0.01时, Dy=______ ,dy=______ ;
设,则dy=______.设,则dy=______.
设,则dy=______.设,则dy=______.
A: -dy B: dx C: dx+dy D: dy
A: -dy B: dx C: dx+dy D: dy
隐函数dy与dy/dx有什么区别
隐函数dy与dy/dx有什么区别
已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】
已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】