设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
已知函数[img=102x27]18030256dad01f2.png[/img],求其三阶导数,下面命令正确的是() A: syms t; G=simplify(diff(t^2*sin(t),t,3)) B: syms t; G=simplify(int(t^2*sin(t),t,3)) C: syms t; G=simplify(diff(t^2*sin(t),t)) D: syms t; G=simplify(int(t^2*sin(t),t))
已知函数[img=102x27]18030256dad01f2.png[/img],求其三阶导数,下面命令正确的是() A: syms t; G=simplify(diff(t^2*sin(t),t,3)) B: syms t; G=simplify(int(t^2*sin(t),t,3)) C: syms t; G=simplify(diff(t^2*sin(t),t)) D: syms t; G=simplify(int(t^2*sin(t),t))
将正弦电压u = 10 sin( 314 t +30 ) V 施加于感抗XL = 5 的电感元件上,<br/>则通过该元件的电流 i = ( ) 。 A: 50 sin( 314 t +90 ) B: 2 sin( 314 t +60 ) C: 2 sin( 314 t -60 ) D: 2 sin( 314 t -30 )
将正弦电压u = 10 sin( 314 t +30 ) V 施加于感抗XL = 5 的电感元件上,<br/>则通过该元件的电流 i = ( ) 。 A: 50 sin( 314 t +90 ) B: 2 sin( 314 t +60 ) C: 2 sin( 314 t -60 ) D: 2 sin( 314 t -30 )
下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$
下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$
智慧职教: 某一端口网络的电压和电流为关联参考方向,其电压和电流分别为: u(t)=16+25√2sinωt+4√2 sin(3ωt+30°)+√6 sin(5ωt+50°)V ,i(t)=3+10√2 sin(ωt-60°)+4√2 sin(2ωt+20°)+2√2 sin(4ωt+40°) A,则网络的平均功率_______。
智慧职教: 某一端口网络的电压和电流为关联参考方向,其电压和电流分别为: u(t)=16+25√2sinωt+4√2 sin(3ωt+30°)+√6 sin(5ωt+50°)V ,i(t)=3+10√2 sin(ωt-60°)+4√2 sin(2ωt+20°)+2√2 sin(4ωt+40°) A,则网络的平均功率_______。
下列命令执行后得到的图形是 ______ 。x=@(t) 2*sin(t);y=@(t) 2*cos(t)
下列命令执行后得到的图形是 ______ 。x=@(t) 2*sin(t);y=@(t) 2*cos(t)
求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)
求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)