• 2022-06-09 问题

    已有以下定义,则不正确的表达是______。structAA{intm;char*n;}x={10,"abc"},*p=&x; A: *p->n B: p->n C: *p.n D: *x.n

    已有以下定义,则不正确的表达是______。structAA{intm;char*n;}x={10,"abc"},*p=&x; A: *p->n B: p->n C: *p.n D: *x.n

  • 2021-04-14 问题

    【单选题】若集合P={x|x=2n,n∈N},Q={x|x=4n,n∈N},则P∪Q= A. {x|x=4n,n∈N} B. {x|x=2n,n∈N} C. {x|x=n,n∈N} D. {x|x=4n,n∈Z}

    【单选题】若集合P={x|x=2n,n∈N},Q={x|x=4n,n∈N},则P∪Q= A. {x|x=4n,n∈N} B. {x|x=2n,n∈N} C. {x|x=n,n∈N} D. {x|x=4n,n∈Z}

  • 2022-07-26 问题

    下列序列中()为共轭对称序列。 A: x(n)=x(-n) B: x(n)=x(n) C: x(n)=-x(-n) D: x(n)=-x(n)

    下列序列中()为共轭对称序列。 A: x(n)=x(-n) B: x(n)=x(n) C: x(n)=-x(-n) D: x(n)=-x(n)

  • 2021-04-14 问题

    已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().

    已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().

  • 2022-05-29 问题

    计算下列序列的N点DFT。(1)x(n)=1(2)x(n)=δ(n)(3)x(n)=δ(n一n0),0<n0<N(4)x(n)=Rm(n),0<m<N(7)x(n)=ejω0nRN(n)(8)x(n)=sin(ω0n)RN(n)(9)x(n)=cos(ω0n)RN(n)(10)x(n)=nRN(n)

    计算下列序列的N点DFT。(1)x(n)=1(2)x(n)=δ(n)(3)x(n)=δ(n一n0),0<n0<N(4)x(n)=Rm(n),0<m<N(7)x(n)=ejω0nRN(n)(8)x(n)=sin(ω0n)RN(n)(9)x(n)=cos(ω0n)RN(n)(10)x(n)=nRN(n)

  • 2021-04-14 问题

    已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( )。

    已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( )。

  • 2021-04-14 问题

    【填空题】设[x]=n,X=N,则当x>X时,n N(比较大小)

    【填空题】设[x]=n,X=N,则当x>X时,n N(比较大小)

  • 2022-06-06 问题

    将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)

    将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)

  • 2022-06-10 问题

    下列序列中是周期序列的( ) A: x(n) =δ(n) B: x(n) = u(n) C: x(n) = R4(n) D: x(n) = 1

    下列序列中是周期序列的( ) A: x(n) =δ(n) B: x(n) = u(n) C: x(n) = R4(n) D: x(n) = 1

  • 2022-06-12 问题

    \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

    \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

  • 1 2 3 4 5 6 7 8 9 10