求变上限函数[img=72x35]17da5f1066e9acf.png[/img]对变量x的导数,实验命令是(). A: diff(int(sqrt(a+t),t,x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2) B: syms a t; diff(int(sqrt(a+t),t,x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2) C: diff('int(sqrt(a+t)','t',x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2)
求变上限函数[img=72x35]17da5f1066e9acf.png[/img]对变量x的导数,实验命令是(). A: diff(int(sqrt(a+t),t,x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2) B: syms a t; diff(int(sqrt(a+t),t,x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2) C: diff('int(sqrt(a+t)','t',x,x^2))ans =2*x*(x^2 + a)^(1/2) - (a + x)^(1/2)
以${{e}^{t}}$,$t{{e}^{t}}$为特解的二阶线性常系数齐次微分方程是 A: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-x=0$ B: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-2\frac{dx}{dt}+x=0$ C: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}+x=0$ D: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}=0$
以${{e}^{t}}$,$t{{e}^{t}}$为特解的二阶线性常系数齐次微分方程是 A: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-x=0$ B: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-2\frac{dx}{dt}+x=0$ C: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}+x=0$ D: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}=0$
一振幅为A、周期为T、波长为λ的平面简谐波沿x轴负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为()。 A: y=Acos(2πt/T-2πx/λ-π/2) B: y=Acos(2πt/T-2πx/λ+π/2) C: y=Acos(2πt/T+2πx/λ+π/2) D: y=Acos(2πt/T+2πx/λ-π/2)
一振幅为A、周期为T、波长为λ的平面简谐波沿x轴负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为()。 A: y=Acos(2πt/T-2πx/λ-π/2) B: y=Acos(2πt/T-2πx/λ+π/2) C: y=Acos(2πt/T+2πx/λ+π/2) D: y=Acos(2πt/T+2πx/λ-π/2)
一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y=Acos(2πt/T-2πx/λ-1/2π) B: y=Acos(2πt/T+2πx/λ+1/2π) C: y=Acos(2πt/T+2πx/λ-1/2π) D: y=Acos(2πt/T-2πx/λ+1/2π)
一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y=Acos(2πt/T-2πx/λ-1/2π) B: y=Acos(2πt/T+2πx/λ+1/2π) C: y=Acos(2πt/T+2πx/λ-1/2π) D: y=Acos(2πt/T-2πx/λ+1/2π)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设x=1, y=2, 下面程序段执行后x,y的取值是( )。t=xx=yy=t A: x=2 y=1 B: x=1 y=2 C: x=1 y=1 D: x=2 y=2
设x=1, y=2, 下面程序段执行后x,y的取值是( )。t=xx=yy=t A: x=2 y=1 B: x=1 y=2 C: x=1 y=1 D: x=2 y=2
信号x(t)=sin4t/t的能量w= A: 4π B: π C: 2π D: 2π^2
信号x(t)=sin4t/t的能量w= A: 4π B: π C: 2π D: 2π^2
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y.=Acos(2πt/T-2πx/λ-π) B: y=Acos(2πt/T+2πx/λ+π) C: y=Acos(2πt/T+2πx/λ-π) D: y=Acos(2πt/T-2πx/λ+π)
一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y.=Acos(2πt/T-2πx/λ-π) B: y=Acos(2πt/T+2πx/λ+π) C: y=Acos(2πt/T+2πx/λ-π) D: y=Acos(2πt/T-2πx/λ+π)
设\(z = f(x,y)\),\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({f'_x} \sin t+ 3{t^2}{f'_y}\) B: \({f'_x} \cos t+ {t^2}{f'_y}\) C: \({f'_x} \cos t+ 3{t^2}{f'_y}\) D: \({f'_y} \cos t+ 3{t^2}{f'_x}\)
设\(z = f(x,y)\),\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({f'_x} \sin t+ 3{t^2}{f'_y}\) B: \({f'_x} \cos t+ {t^2}{f'_y}\) C: \({f'_x} \cos t+ 3{t^2}{f'_y}\) D: \({f'_y} \cos t+ 3{t^2}{f'_x}\)