设[tex=4.429x1.214]W1uTpzbbehOOliAP2ns4cw==[/tex] 都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶方阵,[tex=8.929x1.214]1FNc07kDow5egXRYL8+GLIk7vDMrbYttx818/g+jV6q6QtJ9Gh6nv1VcLLQ/dBbjNchFbeZsyfahzs7UlvpmUrQ4prQbVDwkBK0ZUgOjgw0=[/tex],且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],若[tex=6.429x2.786]PIak5GQdBqGUzEAptxxv/Z8SaMnYrAfVK2xH70RinvoRAo9mJps9nCyiEGu0xfuhSM0KJ5kNq/GK7j9LCYCwzg==[/tex],求证:[tex=6.714x1.357]Eg85/bKr5EFuE5mFPEmoaSu70vGsYdU89+dKRhtbDUs=[/tex]
设[tex=4.429x1.214]W1uTpzbbehOOliAP2ns4cw==[/tex] 都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶方阵,[tex=8.929x1.214]1FNc07kDow5egXRYL8+GLIk7vDMrbYttx818/g+jV6q6QtJ9Gh6nv1VcLLQ/dBbjNchFbeZsyfahzs7UlvpmUrQ4prQbVDwkBK0ZUgOjgw0=[/tex],且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],若[tex=6.429x2.786]PIak5GQdBqGUzEAptxxv/Z8SaMnYrAfVK2xH70RinvoRAo9mJps9nCyiEGu0xfuhSM0KJ5kNq/GK7j9LCYCwzg==[/tex],求证:[tex=6.714x1.357]Eg85/bKr5EFuE5mFPEmoaSu70vGsYdU89+dKRhtbDUs=[/tex]
1) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实矩阵,且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以分解成[tex=2.929x1.214]uD+loi5Ndfk9oRNW/S/5NQ==[/tex],其中[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]是正交矩阵,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]是一上三角矩阵:[tex=11.929x5.214]iuUhbPg6vGulP+tV2jtZCP8+fINWUOIBYuhILpF13bHy9K9vDpLieRMmpJ2zXt8P5WCwasrT/bhcftZoCydNQZIOF7QAOG8nKDGlYVlVFS54B9tzoOGOGxyZgBkYZKT5OnS6JJpBj7JGFgdTqbS50rB+DFhsxIR915FwxDxWhHkJ5lMjbTLvYpXJ8yVK3iPlHHeABZTdtvP4bnsEbOnI5ErWaTEb143EPJ88etS7vqJ6ismRUFCfZSGkgEeAhnIr[/tex]且[tex=9.071x1.357]o9hjoulZVyyj8haoQFJu/v9xY8hJWIQTjSsa3f/uF9M=[/tex],并证明这个分解是惟一的;2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,证明存在一上三角矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.071x1.143]0jLtcygfwX7LHdfUusxcIQ==[/tex].
1) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实矩阵,且[tex=3.143x1.357]jmW/UUDE3QEpfgsRbhrpUQ==[/tex],证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以分解成[tex=2.929x1.214]uD+loi5Ndfk9oRNW/S/5NQ==[/tex],其中[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]是正交矩阵,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]是一上三角矩阵:[tex=11.929x5.214]iuUhbPg6vGulP+tV2jtZCP8+fINWUOIBYuhILpF13bHy9K9vDpLieRMmpJ2zXt8P5WCwasrT/bhcftZoCydNQZIOF7QAOG8nKDGlYVlVFS54B9tzoOGOGxyZgBkYZKT5OnS6JJpBj7JGFgdTqbS50rB+DFhsxIR915FwxDxWhHkJ5lMjbTLvYpXJ8yVK3iPlHHeABZTdtvP4bnsEbOnI5ErWaTEb143EPJ88etS7vqJ6ismRUFCfZSGkgEeAhnIr[/tex]且[tex=9.071x1.357]o9hjoulZVyyj8haoQFJu/v9xY8hJWIQTjSsa3f/uF9M=[/tex],并证明这个分解是惟一的;2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,证明存在一上三角矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.071x1.143]0jLtcygfwX7LHdfUusxcIQ==[/tex].