设有方法GN: N®NN®D | N`DD®0|1|2……|9下列哪个句型中有最右推导() A: 2D B: D6D C: N‘88 D: DND
设有方法GN: N®NN®D | N`DD®0|1|2……|9下列哪个句型中有最右推导() A: 2D B: D6D C: N‘88 D: DND
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
能够匹配Java正则表达式“[+-]?[0-9]+[.]?\d+”的有 A: +88 B: -88 C: +-88 D: +8.88 E: -.88
能够匹配Java正则表达式“[+-]?[0-9]+[.]?\d+”的有 A: +88 B: -88 C: +-88 D: +8.88 E: -.88
float f[][][] = new float[3][][]; float f0 = 1.0f; float[][] farray = new float[1][1]; What is valid?() A: f[0] = f0; B: f[0] = farray; C: f[0] = farray[0]; D: f[0] = farray[0][0];
float f[][][] = new float[3][][]; float f0 = 1.0f; float[][] farray = new float[1][1]; What is valid?() A: f[0] = f0; B: f[0] = farray; C: f[0] = farray[0]; D: f[0] = farray[0][0];
设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
若在区间[0,1]上f″(x)>0,则f′(0),f′(1),f(1)-f(0)或f(0)-f(1)的大小顺序是() A: B: C: D:
若在区间[0,1]上f″(x)>0,则f′(0),f′(1),f(1)-f(0)或f(0)-f(1)的大小顺序是() A: B: C: D:
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
设函数f(x)在[a,b]上连续,且f(a)·f(b)<0,则必定存在一点ξ∈(a,b)使得()。 A: f(ξ)>0 B: f(ξ)<0 C: f(ξ)=0 D: f(ξ)=0
设函数f(x)在[a,b]上连续,且f(a)·f(b)<0,则必定存在一点ξ∈(a,b)使得()。 A: f(ξ)>0 B: f(ξ)<0 C: f(ξ)=0 D: f(ξ)=0
设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0