下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
当x→∞时,f(x)=x-sinax与g(x)=x<sup>2</sup>ln(1-bx)为等价无穷小,则()。 A: a=1,b=-1/6 B: a=1,b=1/6 C: a=-1,b=-1/6 D: a=-1,b=1/6
当x→∞时,f(x)=x-sinax与g(x)=x<sup>2</sup>ln(1-bx)为等价无穷小,则()。 A: a=1,b=-1/6 B: a=1,b=1/6 C: a=-1,b=-1/6 D: a=-1,b=1/6
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述: (1)若f(x)>g(x).则f"(x)>g’(x);(2)若f"(x)>g’(x),则f(x)>g(x).则 ( ) A: (1),(2)都正确 B: (1),(2)都不正确 C: (1)正确,但(2)不正确 D: (2)正确,但(1)不正确
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述: (1)若f(x)>g(x).则f"(x)>g’(x);(2)若f"(x)>g’(x),则f(x)>g(x).则 ( ) A: (1),(2)都正确 B: (1),(2)都不正确 C: (1)正确,但(2)不正确 D: (2)正确,但(1)不正确
下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
设函数g(x)可微,h(x)=lng(x),h’(1)=1,g’(1)=2,则g(1)等于()。 A: e B: 1 C: 2 D: 3
设函数g(x)可微,h(x)=lng(x),h’(1)=1,g’(1)=2,则g(1)等于()。 A: e B: 1 C: 2 D: 3
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则()。 A: a=1,b=-1/6 B: a=1,b=1/6 C: a=-1,b=-1/6 D: a=-1,b=1/6
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则()。 A: a=1,b=-1/6 B: a=1,b=1/6 C: a=-1,b=-1/6 D: a=-1,b=1/6