已知三次Hermite插值多项式满足:H3(χ0)=f(χ0),H3(χ1)=f(χ1),H′3(χ0)=f′(χ0),H′3(χ1)=f′(χ1)。如果增加一节点χ及条件f(χ2),f′(χ2),试从H3(χ)构造五次多项式H5(χ)满足:H5(χi)=f(χi),H′5(χi)=f′(χi)(i=0,1,2)
已知三次Hermite插值多项式满足:H3(χ0)=f(χ0),H3(χ1)=f(χ1),H′3(χ0)=f′(χ0),H′3(χ1)=f′(χ1)。如果增加一节点χ及条件f(χ2),f′(χ2),试从H3(χ)构造五次多项式H5(χ)满足:H5(χi)=f(χi),H′5(χi)=f′(χi)(i=0,1,2)
料仓中粉体结拱的临界条件是( )。 A: FF>ff B: FF=ff C: FF<ff D: FF=0
料仓中粉体结拱的临界条件是( )。 A: FF>ff B: FF=ff C: FF<ff D: FF=0
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$
设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
以 下 不 等 式 中 ,不 正 确 的 是( )。 A: 1 2 3 4 5 6 <(1 2 3 4 5 6)H B: (1 1 0 1 0 1 0 1 0 1 0 1 0)B>(F F F)H C: (9)H> 9 D: 1 1 1 1 >(1 1 1 1)B
料仓中粉体结拱的临界条件是( )。 A: FF>ff B: FF=ff C: FF<ff D: FF=0
料仓中粉体结拱的临界条件是( )。 A: FF>ff B: FF=ff C: FF<ff D: FF=0
10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
下列由强到弱的力度关系正确的是() A: ff>mf>p>pp B: mf>f>mp>p>pp C: ff>mf>f>mp>p D: p>mp>f>ff
下列由强到弱的力度关系正确的是() A: ff>mf>p>pp B: mf>f>mp>p>pp C: ff>mf>f>mp>p D: p>mp>f>ff
在F[x]中,若f(x)g(x)=f(x)h(x)成立,则可以推出h(x)=g(x)的条件是()。 A: h(x)g(x)不为0 B: g(x)不为0 C: h(x)不为0 D: f(x)不为0
在F[x]中,若f(x)g(x)=f(x)h(x)成立,则可以推出h(x)=g(x)的条件是()。 A: h(x)g(x)不为0 B: g(x)不为0 C: h(x)不为0 D: f(x)不为0