设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
已知函数[img=102x27]18030256dad01f2.png[/img],求其三阶导数,下面命令正确的是() A: syms t; G=simplify(diff(t^2*sin(t),t,3)) B: syms t; G=simplify(int(t^2*sin(t),t,3)) C: syms t; G=simplify(diff(t^2*sin(t),t)) D: syms t; G=simplify(int(t^2*sin(t),t))
已知函数[img=102x27]18030256dad01f2.png[/img],求其三阶导数,下面命令正确的是() A: syms t; G=simplify(diff(t^2*sin(t),t,3)) B: syms t; G=simplify(int(t^2*sin(t),t,3)) C: syms t; G=simplify(diff(t^2*sin(t),t)) D: syms t; G=simplify(int(t^2*sin(t),t))
一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)
一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$
下列信号中,( )信号的频谱是连续的。 A: $x(t) = A\sin (\omega t + {\varphi _1}) + B\sin (3\omega t + {\varphi _2})$ B: $x(t) = 5\sin 30t + 3\sin \sqrt {50} t$ C: $x(t) = {e^{ - at}}\sin {\omega _0}t$
设 $z=e^{x-2y}$, 而 $x=\sin t, y=t^3$, 则 $\displaystyle\frac{\mathrm{d}z}{\mathrm{d}t}=$ A: $\displaystyle\cos t+3t^2$ B: $e^{\sin t-2t^3}(\cos t+3t^2)$ C: $\displaystyle\cos t-6t^2$ D: $e^{\sin t-2t^3}(\cos t-6t^2)$
设 $z=e^{x-2y}$, 而 $x=\sin t, y=t^3$, 则 $\displaystyle\frac{\mathrm{d}z}{\mathrm{d}t}=$ A: $\displaystyle\cos t+3t^2$ B: $e^{\sin t-2t^3}(\cos t+3t^2)$ C: $\displaystyle\cos t-6t^2$ D: $e^{\sin t-2t^3}(\cos t-6t^2)$
如载波信号为uC(t)=sin2π×106t,已调制波为 u(t)=sin(2π×106t+3sin2π×103t),则该已调波为 。 A: DSB 波 B: AM 波 C: SSB 波 D: 调角波
如载波信号为uC(t)=sin2π×106t,已调制波为 u(t)=sin(2π×106t+3sin2π×103t),则该已调波为 。 A: DSB 波 B: AM 波 C: SSB 波 D: 调角波