设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
求微分方程[img=372x60]17da65376dc1787.jpg[/img]的通解。 ( ) A: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 B: C26*exp(3*x) + C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6 C: C26*exp(3*x) + (x*exp(3*x)*(x + 1)^2)/2 D: C27*x*exp(3*x) - (x^2*exp(3*x)*(2*x + 3))/6
函数的定义域是( ) A: {(x,|2<x2+y2<3} B: {(x,|4<x2+y2<9} C: {(x,|4<x2+y2≤9} D: {(x,|22+y2≤3}
函数的定义域是( ) A: {(x,|2<x2+y2<3} B: {(x,|4<x2+y2<9} C: {(x,|4<x2+y2≤9} D: {(x,|22+y2≤3}
求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
若集合A={x|-5<;x<;2},B={x|-3<;x<;3},则A∩B=( ) A: {x|-3<;x<;2} B: {x|-5<;x<;2} C: {x|-3<;x<;3} D: {x|-5<;x<;3}
若集合A={x|-5<;x<;2},B={x|-3<;x<;3},则A∩B=( ) A: {x|-3<;x<;2} B: {x|-5<;x<;2} C: {x|-3<;x<;3} D: {x|-5<;x<;3}
若集合A={x|-3<x<3},B={x|(x+4)(x-2)>0},则A∩B=( )A.{x|-3<x<2}B.{x|2<x<3}C.{x|-3<x<-2}D.{x|x<-4或x>-3}
若集合A={x|-3<x<3},B={x|(x+4)(x-2)>0},则A∩B=( )A.{x|-3<x<2}B.{x|2<x<3}C.{x|-3<x<-2}D.{x|x<-4或x>-3}
不等式|5-2x|<1的解集是() A: {x|x<2或x>3} B: {x|2<x<3} C: {x|x<-3或x>-2} D: {x|-3<x<-2}
不等式|5-2x|<1的解集是() A: {x|x<2或x>3} B: {x|2<x<3} C: {x|x<-3或x>-2} D: {x|-3<x<-2}
已知\(f(x)\)在节点1,2处的函数值为\(f(1) = 2,f(2) = 3\) ,在节点1,2处的导数值为\(f'(1) = 0,f'(2) = - 1\) ,求 f(x) 两点三次埃米特插值多项式 A: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 6\) B: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 3\) C: \(H(x) = - 3{x^3} + 13{x^2} - 17x +7\) D: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 9\)
已知\(f(x)\)在节点1,2处的函数值为\(f(1) = 2,f(2) = 3\) ,在节点1,2处的导数值为\(f'(1) = 0,f'(2) = - 1\) ,求 f(x) 两点三次埃米特插值多项式 A: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 6\) B: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 3\) C: \(H(x) = - 3{x^3} + 13{x^2} - 17x +7\) D: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 9\)
函数$f(x)={{\text{e}}^{2x-{{x}^{2}}}}$在$x=0$处的$3$次Taylor多项式为 A: $1+2x+2{{x}^{2}}+2{{x}^{3}}$ B: $1+2x+2{{x}^{2}}-4{{x}^{3}}$ C: $1+2x+{{x}^{2}}+\frac{2}{3}{{x}^{3}}$ D: $1+2x+{{x}^{2}}-\frac{2}{3}{{x}^{3}}$
函数$f(x)={{\text{e}}^{2x-{{x}^{2}}}}$在$x=0$处的$3$次Taylor多项式为 A: $1+2x+2{{x}^{2}}+2{{x}^{3}}$ B: $1+2x+2{{x}^{2}}-4{{x}^{3}}$ C: $1+2x+{{x}^{2}}+\frac{2}{3}{{x}^{3}}$ D: $1+2x+{{x}^{2}}-\frac{2}{3}{{x}^{3}}$