设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
设有f(x)为连续函数,则有F’(2)=() A: 2f(2) B: f(2) C: -f(2) D: 0
设有f(x)为连续函数,则有F’(2)=() A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
设f(x)为连续函数,则Fˊ(2)等于(). A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,则Fˊ(2)等于(). A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0
设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0
298K,100kPa下,NaCl(s)与其水溶液平衡共存,有() A: Φ=2,C=2,f*=2 B: Φ=2,C=2,f*=0 C: Φ=2,C=3,f*=1 D: Φ=2,C=2,f*=1
298K,100kPa下,NaCl(s)与其水溶液平衡共存,有() A: Φ=2,C=2,f*=2 B: Φ=2,C=2,f*=0 C: Φ=2,C=3,f*=1 D: Φ=2,C=2,f*=1
若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$