()信号的频谱是连续的。 A: x(t)=〡asinωt〡 B: x(t)=7cos20t+6sint C: x(t)=3cos20t D: x(t)=〡cos20t〡
()信号的频谱是连续的。 A: x(t)=〡asinωt〡 B: x(t)=7cos20t+6sint C: x(t)=3cos20t D: x(t)=〡cos20t〡
画出连续时间信号[img=236x25]18034af68fd6486.png[/img]的采样信号,采样周期为1/40s,正确的MATLAB语句是( ) A: stem([0:1/40:1],cos(20*pi*[0:1/40:1])); B: plot([0:1/40:1],cos(20*pi*[0:1/40:1])); C: fplot('cos(20*pi*t)',[0:1]); D: t=0:0.01:1; xc=cos(20*pi*t); plot(t,xc);
画出连续时间信号[img=236x25]18034af68fd6486.png[/img]的采样信号,采样周期为1/40s,正确的MATLAB语句是( ) A: stem([0:1/40:1],cos(20*pi*[0:1/40:1])); B: plot([0:1/40:1],cos(20*pi*[0:1/40:1])); C: fplot('cos(20*pi*t)',[0:1]); D: t=0:0.01:1; xc=cos(20*pi*t); plot(t,xc);
求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)
求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)
已知u(t)=2 cos (2t-90°)V,i(t)= cos (2t+150°)mA,则( )。
已知u(t)=2 cos (2t-90°)V,i(t)= cos (2t+150°)mA,则( )。
设函数$$y=y(x)$$由$$\left\{ \begin{matrix} x=a(t-\sin t), \\ y=a(1-\cos t) \\ \end{matrix} \right.$$确定,则$${y}''(x)=$$(). A: $$-\frac{1}{a(1-\cos t)}$$ B: $$-\frac{1}{a{{(1-\cos t)}^{2}}}$$ C: $$\frac{1}{a(1-\cos t)}$$ D: $$\frac{1}{a{{(1-\cos t)}^{2}}}$$
设函数$$y=y(x)$$由$$\left\{ \begin{matrix} x=a(t-\sin t), \\ y=a(1-\cos t) \\ \end{matrix} \right.$$确定,则$${y}''(x)=$$(). A: $$-\frac{1}{a(1-\cos t)}$$ B: $$-\frac{1}{a{{(1-\cos t)}^{2}}}$$ C: $$\frac{1}{a(1-\cos t)}$$ D: $$\frac{1}{a{{(1-\cos t)}^{2}}}$$
x=tan(t)sin(t)-cos(t)=?
x=tan(t)sin(t)-cos(t)=?
cos(t),sin(t)线性无关
cos(t),sin(t)线性无关
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
1,cos(t),sin(t)线性无关
1,cos(t),sin(t)线性无关
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)