求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
已知\( y = \ln (6 - {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {6 - {x^2}}} \) B: \( { { - 2x} \over {6 - {x^2}}} \) C: \( {1 \over {6 - {x^2}}} \) D: \( { { {x^2}} \over {6 - {x^2}}} \)
已知\( y = \ln (6 - {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {6 - {x^2}}} \) B: \( { { - 2x} \over {6 - {x^2}}} \) C: \( {1 \over {6 - {x^2}}} \) D: \( { { {x^2}} \over {6 - {x^2}}} \)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
表面积为\({a^2}\)且体积为最大的长方体的体积为( )。 A: \({a \over {\sqrt 6 }}\) B: \( { { {a^3}} \over {36}}\) C: \( { { \sqrt 6 {a^3}} \over {36}}\) D: \( { { {a^2}} \over 6}\)
表面积为\({a^2}\)且体积为最大的长方体的体积为( )。 A: \({a \over {\sqrt 6 }}\) B: \( { { {a^3}} \over {36}}\) C: \( { { \sqrt 6 {a^3}} \over {36}}\) D: \( { { {a^2}} \over 6}\)
函数\(z = \ln \left( {3x + {y^4}} \right)\)的全微分为 A: \(dz = { { 3 + {y^4}} \over {3x + {y^4}}}dx + { { 3x + 4{y^3}} \over {3x + {y^4}}}dy\) B: \(dz = {3 \over {3x + {y^4}}}dx + { { 4{y^3}} \over {3x + {y^4}}}dy\) C: \(dz = {3 \over {3x + {y^4}}}dy + { { 4{y^3}} \over {3x + {y^4}}}dx\) D: \(dz = {3 \over {3x + {y^4}}}dx - { { 4{y^3}} \over {3x + {y^4}}}dy\)
函数\(z = \ln \left( {3x + {y^4}} \right)\)的全微分为 A: \(dz = { { 3 + {y^4}} \over {3x + {y^4}}}dx + { { 3x + 4{y^3}} \over {3x + {y^4}}}dy\) B: \(dz = {3 \over {3x + {y^4}}}dx + { { 4{y^3}} \over {3x + {y^4}}}dy\) C: \(dz = {3 \over {3x + {y^4}}}dy + { { 4{y^3}} \over {3x + {y^4}}}dx\) D: \(dz = {3 \over {3x + {y^4}}}dx - { { 4{y^3}} \over {3x + {y^4}}}dy\)
\( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
\( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( ) A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \) B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \) C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \) D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)
已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( ) A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \) B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \) C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \) D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)
若\(D\)是以\((0,0),(1,0)\)及\((0,1)\)为顶点的三角形区域,由二重积分的几何意义知\(\iint\limits_D {(1 - x - y) = }\)( )。 A: \( {1 \over 6}\) B: \( {1 \over 3}\) C: \( {1 \over 2}\) D: \( {1 \over 4}\)
若\(D\)是以\((0,0),(1,0)\)及\((0,1)\)为顶点的三角形区域,由二重积分的几何意义知\(\iint\limits_D {(1 - x - y) = }\)( )。 A: \( {1 \over 6}\) B: \( {1 \over 3}\) C: \( {1 \over 2}\) D: \( {1 \over 4}\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)