• 2022-07-28
    辛普森求积公式,以下正确的是
    A: $\int_a^b {f(x)} dx \approx {{b - a} \over 6}[f(a) + 4f({{a + b} \over 2}) + f(b)]$
    B: $\int_a^b {f(x)} dx \approx {{b - a} \over 6}[f(a) + 4f({{a + b} \over 2}) - f(b)]$
    C: $\int_a^b {f(x)} dx \approx {{b - a} \over 6}[f(a) - 4f({{a + b} \over 2}) + f(b)]$
    D: $\int_a^b {f(x)} dx \approx {{b + a} \over 6}[f(a) + 4f({{a - b} \over 2}) + f(b)]$
  • A
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/eeppmojxaxppoyjo.html

    内容

    • 0

      2.下列等式中,正确的是( ). A: $\int{{f}'(x)dx}=f(x)$ B: $\frac{d}{dx}\int{f(x)dx}=f(x)+C$ C: $\int{df(x)}=f(x)$ D: $d\int{f(x)dx}=f(x)dx$

    • 1

      若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)

    • 2

      若\( f(x) \)是\( g(x) \)的原函数,则( )。 A: \( \int {f(x)dx = g(x) + C} \) B: \( \int {g(x)dx = f(x) + C} \) C: \( \int {g'(x)dx = f(x) + C} \) D: \( \int {f'(x)dx = g(x) + C} \)

    • 3

      若\( \int {f(x)dx = F(x) + C} \),则\( \int { { e^{ - x}}f({e^{ - x}})dx = } \)( ) A: \(- F({e^{-x}}) + C \) B: \( F({e^x}) + C \) C: \( F({e^{-x}}) + C \) D: \(- F({e^x}) + C \)

    • 4

      设\(w = f(x + y + z,xyz)\),其中\(f\)有连续偏导数,则\( { { {\partial}w} \over {\partial {x}}} =\) A: \({f'_1} + yz{f'_2}\) B: \(x{f'_1} + yz{f'_2}\) C: \(yz{f'_1} +x{f'_2}\) D: \({f'_1} +{f'_2}\)