• 2021-04-14 问题

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

  • 2022-06-06 问题

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

    9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$

  • 2022-06-16 问题

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

    应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

  • 2022-06-26 问题

    已知E(X)=2,E(Y)=2,E(XY)=4,则X,Y 的协方差Cov(X,Y)= 。

    已知E(X)=2,E(Y)=2,E(XY)=4,则X,Y 的协方差Cov(X,Y)= 。

  • 2022-05-27 问题

    下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)

    下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

  • 2022-06-07 问题

    设随机变量X,Y有E(X)=3/4, E(Y)=1/2, E(XY)=1/2, 则Cov(X,Y)= ____(a/b)

    设随机变量X,Y有E(X)=3/4, E(Y)=1/2, E(XY)=1/2, 则Cov(X,Y)= ____(a/b)

  • 2022-05-27 问题

    已知E(X)= E(Y)=0, D(X)=1,D(Y)=4, ρXY =1/2 , 若Z=aX+Y与Y独立,则a等于( ) A: 2 B: -2 C: 4 D: -4

    已知E(X)= E(Y)=0, D(X)=1,D(Y)=4, ρXY =1/2 , 若Z=aX+Y与Y独立,则a等于( ) A: 2 B: -2 C: 4 D: -4

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

  • 1 2 3 4 5 6 7 8 9 10