多面体的欧拉公式是: A: V–F + E = 2 B: V–F–E = 2 C: V + F–E = 2 D: V + F–E = 1
多面体的欧拉公式是: A: V–F + E = 2 B: V–F–E = 2 C: V + F–E = 2 D: V + F–E = 1
F大调的DDVII7是以下哪个选项? A: 7 2 4 6 B: 7 C: 2 D: 4 6 E: F: 7 2 G: 4 6 H: 7 2 4 b6
F大调的DDVII7是以下哪个选项? A: 7 2 4 6 B: 7 C: 2 D: 4 6 E: F: 7 2 G: 4 6 H: 7 2 4 b6
f(x)=xln2x在x0处可导,f'(x0)=2, 则f(x0)=( ) A: 1 B: e/2 C: 2/e D: e^2
f(x)=xln2x在x0处可导,f'(x0)=2, 则f(x0)=( ) A: 1 B: e/2 C: 2/e D: e^2
8.12.2U= {A,B,C,D,E} ; F={AB→C,B→D,C→E,EC→B,AC→B} 1) 问 AE→B属于 F+? 2) 计算 (AC)F+, (EC)F+
8.12.2U= {A,B,C,D,E} ; F={AB→C,B→D,C→E,EC→B,AC→B} 1) 问 AE→B属于 F+? 2) 计算 (AC)F+, (EC)F+
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设有符合函数y=f[φ2(x)ψ(ex)],其中函数f,φ,ψ都可微分,则dy=()。 A: f′·(2φφ′ψ+φψ′e) B: f′·(2φφ′ψ+φψ′e)dx C: f′·(2φψ+φψ′)dx D: f′·(2φψ+φψ′)
设有符合函数y=f[φ2(x)ψ(ex)],其中函数f,φ,ψ都可微分,则dy=()。 A: f′·(2φφ′ψ+φψ′e) B: f′·(2φφ′ψ+φψ′e)dx C: f′·(2φψ+φψ′)dx D: f′·(2φψ+φψ′)
A、C、FB、D、EC、E、FD、D、F
A、C、FB、D、EC、E、FD、D、F
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)
若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。 A: \({e^{2x}}\ln 2\) B: \({e^x}\ln 2\) C: \({e^x} + \ln 2\) D: \({e^{2x}} + \ln 2\)
若连续函数\(f\left( x \right)\)满足关系式\(f\left( x \right) = \int_0^{2x} {f\left( { { t \over 2}} \right)} \,dt + \ln 2\),则\(f\left( x \right)\)等于( )。 A: \({e^{2x}}\ln 2\) B: \({e^x}\ln 2\) C: \({e^x} + \ln 2\) D: \({e^{2x}} + \ln 2\)