• 2022-06-16 问题

    函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)

    函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)

  • 2021-04-14 问题

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

    分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2

  • 2022-05-31 问题

    已知X=1+根号2,Y=根号2-1,求(根号xy-xy/根号xy-x)÷根号xy+y/x-y

    已知X=1+根号2,Y=根号2-1,求(根号xy-xy/根号xy-x)÷根号xy+y/x-y

  • 2022-06-16 问题

    设f(x,y)=(xy)/(x^2+y) ,则 f(xy,x/y)=______ 。

    设f(x,y)=(xy)/(x^2+y) ,则 f(xy,x/y)=______ 。

  • 2022-06-16 问题

    设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)

    设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)

  • 2022-06-05 问题

    设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)

    设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)

  • 2022-06-27 问题

    在下图中,已知斜截面上无应力,该x、y面上的应力分量满足关系 ( )[img=363x330]1803be4a6959759.png[/img] A: σx>σy, τyx>τxy B: σx<σy, τxy=τxy C: σx>σy, τyx=τxy D: σx<σy, τyx>τxy

    在下图中,已知斜截面上无应力,该x、y面上的应力分量满足关系 ( )[img=363x330]1803be4a6959759.png[/img] A: σx>σy, τyx>τxy B: σx<σy, τxy=τxy C: σx>σy, τyx=τxy D: σx<σy, τyx>τxy

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

  • 2022-06-05 问题

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

    设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)

  • 2022-06-15 问题

    设函数z=f(x,y)=xy/(x2+y2),则下列结论中不正确的是() A: f(1,y/x)=xy/(x+y) B: f(1,x/y)=xy/(x+y) C: f(1/x,1/y)=xy/(x+y) D: f(x+y,x-y)=xy/(x+y)

    设函数z=f(x,y)=xy/(x2+y2),则下列结论中不正确的是() A: f(1,y/x)=xy/(x+y) B: f(1,x/y)=xy/(x+y) C: f(1/x,1/y)=xy/(x+y) D: f(x+y,x-y)=xy/(x+y)

  • 1 2 3 4 5 6 7 8 9 10