${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
已经知道,设f是[a.b]上的可积函数,若f(x)>=0,x∈[a,b],则定积分∫_a^bf(x)dx>=0,那么如果设f是[a.b]
已经知道,设f是[a.b]上的可积函数,若f(x)>=0,x∈[a,b],则定积分∫_a^bf(x)dx>=0,那么如果设f是[a.b]
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
设$f(x)$在$[a,b]$上连续,且$\int_a^bf(x)dx=0$,则在$[a,b]$上, A: $f(x)\equiv 0$ B: 必存在$\xi$,使得$f(\xi)=0$ C: 必有唯一的$\xi$,使得$f(\xi)=0$ D: 不一定存在$\xi$,使得$f(\xi)=0$
设$f(x)$在$[a,b]$上连续,且$\int_a^bf(x)dx=0$,则在$[a,b]$上, A: $f(x)\equiv 0$ B: 必存在$\xi$,使得$f(\xi)=0$ C: 必有唯一的$\xi$,使得$f(\xi)=0$ D: 不一定存在$\xi$,使得$f(\xi)=0$
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
如图2,延长ac至f使cf=ad,连接bf、df.求证
如图2,延长ac至f使cf=ad,连接bf、df.求证
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
蛋白C(PC)被激活为活化蛋白C(APC)后可灭活() A: AFⅤFⅨa B: BFⅦa、FⅧa C: CFⅤa、FⅧa D: DFⅫa、FⅪa E: EFⅨa、FⅧa
蛋白C(PC)被激活为活化蛋白C(APC)后可灭活() A: AFⅤFⅨa B: BFⅦa、FⅧa C: CFⅤa、FⅧa D: DFⅫa、FⅪa E: EFⅨa、FⅧa
043、目前电脑可以替代部分( )的工作
043、目前电脑可以替代部分( )的工作