证明定理[tex=2.071x1.0]iMPBWLZxO2oVZlUu6Jt50Q==[/tex] 即证明群[tex=0.786x1.0]gnB1nGwfTzcsi5fc6mxE7A==[/tex]中运算满足消去律.
举一反三
- 证明定理[tex=1.786x1.0]4DgM86TLEdT+SY2szxku8A==[/tex] 的(5),即设[tex=0.786x1.0]cj+ar+3r72WJpbnL/JXCXA==[/tex]为群,证明:[br][/br][tex=1.286x1.357]VHgv8yVrrSZwLqu1l6FPnQ==[/tex]若[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为交换群,则[tex=5.143x1.357]t48K1M+FNgLFpJU7RDyhapE7S+wfDVpNrHVUOvLxSpI=[/tex]
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个具有乘法运算的非空有限集合。证明: 如果 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 满足结合律, 有左单位元,且右消去律成立,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是一个群。
- 证明定理[tex=1.786x1.0]4DgM86TLEdT+SY2szxku8A==[/tex] 的(4),即设[tex=0.786x1.0]cj+ar+3r72WJpbnL/JXCXA==[/tex]为群,证明:[br][/br][tex=10.214x1.357]OFsNs1mVzik4hGfQcLbAvIJ7qETFhZTqJbD2lqD5Pnmpr5AUDhTx+SRs1rVok4/yL7JiNjYaHT9F0i7R5ncO8g==[/tex]
- [br][/br]完成定理[tex=2.071x1.0]cqFA0bKN/GKbqS0ZfwhvvA==[/tex]的证明即证明 [tex=11.143x1.071]YZAw989HFJ39uZVxgLmfF3ms3OW3lvOePptNlxkreYMWC01ZkasetFV4qbNNF/Kq[/tex]
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是非空集合, “."是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]上的一个代数运算且适合结合律.(1) 证明: [tex=2.143x1.357]kEczID9Pt4ItYwOqbKjMvA==[/tex]是一个群当且仅当对于任意的[tex=2.857x1.214]sSIApBg6OzoLyhTiB5OMxw==[/tex], 方程[tex=3.071x1.0]Qlnl7DNF35MBGJR2KizZiA==[/tex]和 [tex=3.0x1.214]ZCfK1l3RDW3KGNtluzrejw==[/tex]在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中都有解.(2) 假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限集, 证明: [tex=2.143x1.357]kEczID9Pt4ItYwOqbKjMvA==[/tex]是一个群当且仅当“."适合消去律.