• 2022-05-29
    证明矩阵的 Kronecker 积满足下列性质 (假设以下的矩阵加法和乘法都有意义):若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 则 [tex=8.071x1.357]jZlRZKKFQjF/ujgQAeRkfB7SdfQcHq+wpiEgFwsFsaECCcbI8oI8I97yiq076siy[/tex]
  • 由 Laplace 定理容易证明:[tex=14.429x1.357]31tGP3I+Ca4+e5Inp9QtXN4xH6Ae4sgsmlg58E2JpdRUAL7hiYrllIEN9AaErSl+lG9nJqllHBy/g+c6v8ir7/md0MIN5HQBEsenGhaaN+hBr9UASCm89dXmd8EkrdjQr9wAQyAGPY7988p47qQyEw==[/tex]再由 [tex=13.714x1.357]BcFQ3lw5sDpA0BJsbJwqKEtVMLbI/8xnM0g4PP/ouTjlaIiKF3wK3Slttzl8yIeJBKMEfyut7OiJ3Q4MN879Lw==[/tex]及矩阵乘法的行列式等于行列式的乘法可得[tex=25.429x1.357]aJaSZthFG5b1C3AKqhhmUYxuZ3PAodoBwTcGqEgTfVbZC1fl9uw6mRMhYLfkMPTrEziWekQlj1MAPs0taV8ZKf9rSk8Sxxp+ea0TQHIgbm7eYEo76FOTOunRzzzMUTj5R81oRDNGjFQw+F4aUB3ZRFzA81kRkLXfkCU4h+NqA/u8PqO1gQpr9XPYz+jVLI4Tk2rgxV2x9IiNUpWMnuZWF7lMPnixExh+MCZ2mVoW8IjVoXGfx0I0/EguwHoX7vIj[/tex]

    举一反三

    内容

    • 0

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异复矩阵, 证明: 对任一正整数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex], 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩 阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=3.0x1.0]+IqgQg4qIKOkoB245qBMJQ==[/tex].

    • 1

      若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].

    • 2

      设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似, [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 与 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 相似,证明分块矩阵 [tex=5.0x2.786]jcCMHflCR8OS9TosV6N5vM9J1HeI3B/5eLTbq3L1ig3M5JgMOMupMMqkQooOC50aXz1JjrxFkNMDENUbvLdw3A==[/tex]与[tex=5.071x2.786]jcCMHflCR8OS9TosV6N5vG/U1MtXZjG8mnizG60/cpakXkd3EsozCNXC1uEDkoAivP+EUe1SPXaXnvDSq26Paw==[/tex] 相似。

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求证: 若 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 没有公共的特征 值, 则矩阵方程 [tex=4.0x1.0]rHmk49/Mw119BRwDDrzk+g==[/tex] 只有零解 [tex=2.714x1.0]dQvKenKVMNVZUOQUyPeZlA==[/tex]

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.