袋中有[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]个白球和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]个红球,现依次不放回地取出两个,试求两次都取到白球的概率.
举一反三
- 袋中有[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]个白球与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]个黑球.每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率.
- 有[tex=2.0x1.214]rx7+rpOjmyj7tj6QX/SKxw==[/tex] 3 个盒子,[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒中有 1 个白球和 2 个黑球,[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒中有 1 个黑球和 2 个白球,[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒中有 3 个白球和 3 个黑球,今掷一颗骰子以决定选盒,若出现 1,2,3 点则选[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒,若出现 4 点则选[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒,若出现 5,6 点则选 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒,在选出的盒子中任取一球(1) 求取出白球的概率;(2) 若取出的是白球,分别求此球来自[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]盒、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]盒、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]盒的概率.
- 设袋内有[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex]([tex=2.429x1.143]JfRk0TIv5kZsg8a9WQ7xig==[/tex])个白球, [tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]个黑球,在袋中接连取 3 次,每次取 1 个球,取后不放回,求取出的 3 个球都是白球的概率.
- 袋中有[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]球,其中[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]个红球、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]个白球、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]个黑球[tex=6.214x1.357]9cd23L7i/RJiYWDv4NITmA==[/tex],每次从袋中任取一球,共取[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次.设[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]分别表示[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次取球取出红球和白球的次数,在下列两种情况下,求二维随机变量[tex=2.214x1.357]p6HDDSVbX8TarWXhfmrDgg==[/tex]的分布律.(1) 每次取出的球仍放回去(放回抽样);(2) 每次取出的球不放回去(不放回抽样).
- 已知甲袋中装有 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] 只红球, [tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex] 只白球; 乙袋中装有 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex] 只红球, [tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex] 只白球. 试求下列事 件的概率:(1) 合并两个口袋,出中随机地取 1 个球, 该球是红球;(2) 随机地取 1 个口袋,再从该袋中随机地取 1 个球,该球是红球;(3) 从甲袋中随机地取出 1 个球放入乙袋,再从乙袋中随机地取出 1 个球,该球是红球.