• 2022-05-30
    [tex=1.071x1.286]3Zu+I7LrMdqwilpkyZqGcw==[/tex]表示A. 总体均数B. 样本均数的标准差C. 总体均数离散程度D. 变量值[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的离散程度E. 变量值[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的可靠程度
  • B

    举一反三

    内容

    • 0

      设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.

    • 1

      已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.

    • 2

      设总体样本[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]分布密度为[tex=13.786x2.429]j5agDdJkFTcU3oAEr7zMVYAjPcbxs/IMeWGBZRqrAAp5nM80HBliI2FsMIJFuxPTtJXiDCDbIuQQVc1CkS4r+k1ApRdAmckch0yVBoazhVU=[/tex][tex=8.714x1.357]QvdrmMEkEkXBcM7p9FuvTRREbj6qCffrqKI1v5nuZxJ1HbRT2CuEuk4k8nMm2n492d+m1RhEZcnJodizbZOaxg==[/tex]是来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的容量为 7 的样本,试求样本中位数[tex=1.786x1.357]4S5BGyfqec2GPYM2CZmcJw==[/tex]小于[tex=3.5x1.429]KulqzWgx+8tvN9KMDVeBfupGSVB8uby5QzRJHDbPphI=[/tex]的概率.

    • 3

      设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]只有两个间断点.则  未知类型:{'options': ['[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是连续型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]\xa0一定不是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定不是连续型随机变量'], 'type': 102}

    • 4

      已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.