举一反三
- σX-表示 A.总体均数的离散程度 B.变量值x的可靠程度 C.样本均数的标准差 D.变量值间的差异大小 E.总体均数标准误
- 已知离散型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布列为: [tex=17.929x1.357]ikQ9bj0jXqEsK0iZGG38patjGiNNp2skUum208IHQDrgM02liZ3vl6bkit9icGZY[/tex] 试写出 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数。
- 对以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为自变量, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为因变量作线性回归分析时,下列正确的说法是A. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从正态分布B. 只要求 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从正态分布C. 只要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 是定量变量D. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 都服从正态分布E. 要求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 服从双变量正态分布
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[tex=11.786x2.357]eLD1HVCESEL2gz+7T09qlEfO2xNhQP1Sll0/ItRljX15guGlC951Seebt+2t3fo2MZMYNULaNLwkaHAronS+HhC2DHh2hibrbMThrVZDVZg=[/tex]为总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,其样本方差为[tex=1.071x1.214]i5X1X5E7qL58XB/6KQ47DQ==[/tex],则[tex=2.643x1.214]7uZncL+wDfjqPyzkaRzKHw==[/tex]?
- 设离散随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从巴斯卡分布[tex=19.929x2.786]NxHbA/HEbR7iqDw0LPLhWi0gviADb8cfmYuvUXgJaf0BNUs2+AoGNad+Cflx8vwb20XmEFkRvKRWE64P610zEyS1LRYymdXcLjrdce0zZksuu3anGstwN7IyF7seEXkqMIut4hvpU5sZc9T0OxNalg==[/tex]试求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的特征函数.
内容
- 0
设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 1
已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 2
设总体样本[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]分布密度为[tex=13.786x2.429]j5agDdJkFTcU3oAEr7zMVYAjPcbxs/IMeWGBZRqrAAp5nM80HBliI2FsMIJFuxPTtJXiDCDbIuQQVc1CkS4r+k1ApRdAmckch0yVBoazhVU=[/tex][tex=8.714x1.357]QvdrmMEkEkXBcM7p9FuvTRREbj6qCffrqKI1v5nuZxJ1HbRT2CuEuk4k8nMm2n492d+m1RhEZcnJodizbZOaxg==[/tex]是来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的容量为 7 的样本,试求样本中位数[tex=1.786x1.357]4S5BGyfqec2GPYM2CZmcJw==[/tex]小于[tex=3.5x1.429]KulqzWgx+8tvN9KMDVeBfupGSVB8uby5QzRJHDbPphI=[/tex]的概率.
- 3
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]只有两个间断点.则 未知类型:{'options': ['[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定是连续型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]\xa0一定不是离散型随机变量', '[tex=0.714x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一定不是连续型随机变量'], 'type': 102}
- 4
已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.