• 2022-05-30
    求定义在任意一个长度为[tex=1.071x1.0]wqWJQsRu/vA/9Av6VITTGQ==[/tex]的区间[a,a+[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex]]上的函数f(x)的 Fourier 级数及其系数的计算公式。
  • 解:设[tex=16.5x3.286]fpc/da6qCURGC4btcgT7ZGZ2XayXjCfNu6Zd1zKkjL9iwvOH/4TOa9a76XZfrWXPp3Colp/CgXLEweLmbcgQ9C0bj9Ma+pwku1XZogEc5SWFmIF1wN1VI9BPU5OaRhrr[/tex],则[tex=31.929x3.357]v496ZH1ij5kKmBfmwzo4x/YvbpxSSY0cFeakP7rGPHI97nhr3lIW2EhICfAG5QphhRgubYZkQa9U/yCILeSf6ZHGY2iWNxPhgMMR5LgOT19u0LXbbiwn8YVI+fyGRsjqGoJZcHgN9w1/VWLlQ5aHCSfMNj4KN3HDqMs6aYOdYIZEB5h24xxJ/Z4oT1cy0sy+L87GBL0H/qhMrWA6pGgD2l2IwHfNQiXMZDSgDTsnpsA=[/tex][tex=36.929x3.286]X2g5/cqEEgrF/a8sk4mHRoLt1TUBZwk11qm8Bpxj+FE0sGQ9UnEqKvL9ca4xGH/+6Vhb5fEbGoFBVHHSo15+OjMiuv5LkUFHbhQdbKwt3xfWo4BXQseOpG4suKBrjwCnk/aV+T00QaFRN80Bb9ywJX44t5h9UiQJBfWaQiMsQF3wTgjXxp1RogOddo9+x45p5wXGRgcFin/9jJOyvWn2RgGQNFE6MLqHPA1LqP3+Bl8UGGSqiAq8RQyTDBR5heJU[/tex][tex=10.214x1.357]68mTJEiW8ikGpzBiQxzs1z5zjrA+oTdDgjtAUmWnar5l/dgj9mkRSIv/J5aOJbzG[/tex],[tex=31.714x3.357]v496ZH1ij5kKmBfmwzo4xz6lg5oAM9C7EhATaimyMSxHZydjo9jbfSVz2LK5NbZNqHHN4q+JdzgGcvhZbw2bCUagxa0AOmSHV/22SjkQLCsmb5MgLTAGJG1V/rEe1W9+hvZHD1JZ+MsYni6EWNjLNUpYla/haiQ6pPNk4qqAh7RG9EcQQp2MToDZuUHk3n2TeE7d8s9vrxqTnDCNfxzKPYDIUPG10gaGcUavsYcdjzE=[/tex][tex=36.571x3.286]X2g5/cqEEgrF/a8sk4mHRoLt1TUBZwk11qm8Bpxj+FHCsiMXoLDJ+kbm+P5nIP/oW7lmugWoZ+UxfA0OsRC4ZpCIqUahz2oPOWV+n+uPu1wMrAVgAFcYDIx8LqmJ4eF2f1C8lyeh4Fk96g5B0aqHLdC+JxE/Q9bb5oJ6I3dTdHdI88zvIZtHrgyZkj6c7eggAzp0H6S/RxT0YNM9JJk262utACxey/to3bT6O/nIzIap2KDSzK4kr3avOpndVEeu[/tex][tex=9.143x1.357]P9dmpgCttRv3tzaVIzNHS9NE9cnHiP6S7frWaGsT2XYJDRPowAYM6UOow97x0ss9[/tex],所以[tex=19.143x2.786]i0Pc5TjawqCmFkHHuR+ifTSO3M/CZxbHbJCcqE+GVfXC/OmLsY8GAhxjfnIfekvsn+LwGjG1XVnLDInPk3qOsrIy5aKWQGbRc2tvzev2b0Nj0q7Obvosq0w65UbTIJzM[/tex],[tex=18.0x2.786]k4ur+jkKscF5w19jmtpS978Xf0I2RWGhwrrIiiK+yLuA9FIZQy72FVwI76+VK7bpj+vYZBh8hnSvSrf08MW5nHY32FIN5mDguDMUwr8YsK8=[/tex]。

    举一反三

    内容

    • 0

      设[tex=4.5x1.357]KW2vp2c8gW394gTlxNl5QA==[/tex],将[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.857x1.357]1mhQXLsOO8n4jDLwh++X9Q==[/tex]上展开以[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex]为周期的傅里叶级数;

    • 1

      已知下列函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],给出函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=3.071x1.357]dI/zQ2dAuab0sI9V1YLd+w==[/tex]上的表达式,试将它们展开傅里叶级数,并且作出级数的和函数的图形:[tex=4.643x1.429]+hA5G2HepOWd0yi67zq5tQ==[/tex];

    • 2

      将下列以[tex=1.071x1.0]tieuzjBYrMcmxP3HXZSPGQ==[/tex]为周期的函数展开成Fourier级数,它们在一个周期内分别定义为:[tex=12.0x2.929]ACpG7W/lXiEwdW69ASBj84qoYJO3m1mabcnCHpRr13ejFFiOX+yRIRgAlZJFy9XysWk2XlKu7snDvseH4u1cWFpr52so6UlqHqq5NMpVBv2EghTJOFVg6wFnruyDaiMwY5HW2FQdggFwquP2gRXYGA==[/tex]([tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]为常数, 且[tex=4.143x1.071]s/pfy3+Y58zyYZgBJhqbrQ==[/tex]).

    • 3

      设一元函数 f ( x ) 在 [ a , b ] 上可积, [tex=7.071x1.357]E/j5UlDIh6qL636N99QPV6LkbipqUNyX5I3z2e70KTk=[/tex] 定义二元函数 [tex=10.143x1.357]zsnfiTpHrD3wrQxi2c0Jcou8z6mWyLA2CJj3MsZtrCE=[/tex], 证明 F ( x , y ) 在 D 上可积。

    • 4

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是周期为[tex=1.071x1.0]tieuzjBYrMcmxP3HXZSPGQ==[/tex]的函数,它在[tex=2.929x1.357]QpSc4Vs3d1MTNQAH70ziEw==[/tex]上的表达式为[tex=11.571x3.357]ACpG7W/lXiEwdW69ASBj8yR7ZB6xaVwV4+6J1bev3ILj3tA7vDVPo+BrnXZPAmu+emfWfKcv63KHT7/Qxg1KijeKB2NCcnT7DP7krA+8LEo6CbtyQfb+n7/d0Von8dTRK8UD0vyIYGyNQdvoFTEbYA==[/tex]将[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]展开成Fourier级数.