设\( A \)为三阶矩阵,将\( A \) 的第2行加到第1行得到\( B \),再将\( B \)的第1列的\( - 1 \)倍加到第二列得到\( C \),记\( P = \left( {\matrix{ 1 & 1 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \) 则( )
A: \( C = {P^{ - 1}}AP \)
B: \( C = PA{P^{ - 1}} \)
C: \( C = {P^T}AP \)
D: \( C = PA{P^T} \)
A: \( C = {P^{ - 1}}AP \)
B: \( C = PA{P^{ - 1}} \)
C: \( C = {P^T}AP \)
D: \( C = PA{P^T} \)
举一反三
- 设\( A \)为三阶方阵,将\( A \)的第1列与第2列交换得\( B \),再把\( B \) 的第2列加到第3列得\( C \),则满足\( AQ = C \)的可逆阵\( Q \)为( ) A: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 1 & 0 & 1 \cr } } \right) \) B: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 1 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right) \) D: \( \left( {\matrix{ 0 & 1 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
- 下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
- 设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
- 设A为3阶矩阵,将A的第二列加到第一列得到矩阵B,再交换B的第二行和第三行得单位矩阵,则矩阵A为( ) A: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} B: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\-1 & 1 & 0 \end{bmatrix} C: \begin{bmatrix} -1 &1 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} D: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix}
- 设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)