举一反三
- 设函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一阶导数 [tex=2.143x1.429]DaxPfemWCiQgaNp8zD8Zfw==[/tex] 连续,又设对每一 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 下列条件成立;(1) [tex=3.071x1.357]ivqOE3wOFw+POKEIj2fa6w==[/tex];(2) [tex=6.429x1.429]8hD2ioLre69oMr/cqRIxpzqdhTJJ3SxGp9bs72dSJlYY6X8C7PAbZKDCfkcLtUnV[/tex].试证: [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 恒等于零.
- 设函数 [tex=12.786x4.071]ACpG7W/lXiEwdW69ASBj8/2YlnttL4SSB5wR8px8LpgUNzq7ycdc7SLe4a4gCUD/CbNsVRhRP/lHmPeVS16UtG9Khkwa+IYO4PoiXfjXGMw2WptZMt2fs9fNz+4jAOVOFkx4pUhmaNtVuSPhoF33Gg==[/tex],讨论在上面条件下,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex](1) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续;(2) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导;(3) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处导数连续?
- 设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,求[tex=7.143x1.357]WBHzx45u9p6ikQbcvJXksk+/jCvyYca+kc9mrxy+h0o=[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的导数[tex=2.143x1.429]cyTLS33m58hKP2tqKCic2g==[/tex] .
- 设: (1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]连续,而函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]不连续; (2)当 [tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]时函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]二者都是不连续的,则此二函数的乘积 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在已知点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 是否必不连续?举出适当的例子.
- 设函数 [tex=12.071x2.429]EPaISH7F+7OFqeEao9lVbY9M+geAOkEejYuk2YpDRrOpQz9YTdPtPGqZt8DVR9ycU9GTKtdo3Jd2VZIC9SROX+rW6U9uRk7t3RjrabN8epo=[/tex] 应当怎样选择 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],使得 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续.
内容
- 0
设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 满足 [tex=3.643x1.357]trWzXE2Y41pdKtnPLMtSnQ==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的充分必要条件是:存在在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续的函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex],使得 [tex=5.071x1.357]V/Yt0M6xxWzSF4VP2LPvmQ==[/tex], 且此时成立 [tex=4.643x1.429]j33crdi4rhtvkGdRcb9xHv8ljW9mqQebzO3XpbwfxLI=[/tex].
- 1
已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为奇函数,且[tex=8.857x1.357]J70c06NcKSuavVueJFA+2JxXMulFojgPT0TTO8QgrTU=[/tex],试求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]、[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]。
- 2
函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续,且 [tex=2.357x1.286]Fi2NJRx2RFwIfP6VHB/3aQ==[/tex] 时, [tex=5.214x2.357]50eeCK36Ke9MlXMNn8zhYcW4zNdIiMs46KE3fGlp7cY=[/tex] 则 [tex=2.571x1.357]xbxx8OurM1EJDW2xFdqbOg==[/tex] A: 0 B: 1 C: -1 D: e
- 3
设: (1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 当[tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]时是连续的,而函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 当 [tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]时是不连续的; (2)当[tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex] 时 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 二者都是不连续的,则此二函数的和[tex=4.5x1.357]FuopRL4cHdRFBwxxjhBglA==[/tex]在已知点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 是否必为不连续的?举出适当的例子.
- 4
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 具有二阶连续导数,且 [tex=3.357x1.357]S8DKqLIO+otbp01PE+ZH8A==[/tex] [tex=11.286x4.5]PhL/cv4k8jAjyF+v4yjHJNpjGPiWgAcN2FFZnZdXw77NUjEjkjspv4YispdKli6Kt9wI/eexrx0vu1gUUw4V5f3nytu/yCjsvcX8QeA66xI8csLlfEZ5Mi8u81M9q8AdX/e18mAZC4LRSlkt9iQXaA==[/tex],(1) 求 [tex=2.143x1.429]DaxPfemWCiQgaNp8zD8Zfw==[/tex];(2) 证明 : [tex=1.857x1.357]4AsehPcyFJurfSXX5VJeww==[/tex] 的一阶导数在 [tex=1.929x0.786]qBxW1Wco1uHB6W+VkCK3Kw==[/tex] 处连续.