设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 有连续导数 [tex=2.786x1.429]egmGySa5C2ugHKa8wJK+tTyQDhbiDobr3m9uXNaDfzE=[/tex] 存在 [tex=7.643x1.429]IliYyXQ/LeDk8wCXsJUVgBLqdtSE0Ipf8z0XOeWG43c=[/tex]且,[tex=10.929x4.071]PhL/cv4k8jAjyF+v4yjHJNjYkz6+iBjZysCDeNkD9DwpPVXF1SwBrYxlqOY13zPe9rsyGkYaTtL8Eimo9+AavYZB/FlPy1P2dFwaN8061E7sZLU/tPbCxUQkLah90VDW[/tex](1)试确定 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的值使[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,(2) 求证[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在(1)所得的[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]条件下导数是连续的.
举一反三
- 设函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一阶导数 [tex=2.143x1.429]DaxPfemWCiQgaNp8zD8Zfw==[/tex] 连续,又设对每一 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 下列条件成立;(1) [tex=3.071x1.357]ivqOE3wOFw+POKEIj2fa6w==[/tex];(2) [tex=6.429x1.429]8hD2ioLre69oMr/cqRIxpzqdhTJJ3SxGp9bs72dSJlYY6X8C7PAbZKDCfkcLtUnV[/tex].试证: [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 恒等于零.
- 设函数 [tex=12.786x4.071]ACpG7W/lXiEwdW69ASBj8/2YlnttL4SSB5wR8px8LpgUNzq7ycdc7SLe4a4gCUD/CbNsVRhRP/lHmPeVS16UtG9Khkwa+IYO4PoiXfjXGMw2WptZMt2fs9fNz+4jAOVOFkx4pUhmaNtVuSPhoF33Gg==[/tex],讨论在上面条件下,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex](1) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续;(2) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导;(3) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处导数连续?
- 设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,求[tex=7.143x1.357]WBHzx45u9p6ikQbcvJXksk+/jCvyYca+kc9mrxy+h0o=[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的导数[tex=2.143x1.429]cyTLS33m58hKP2tqKCic2g==[/tex] .
- 设: (1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]连续,而函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]不连续; (2)当 [tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]时函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]二者都是不连续的,则此二函数的乘积 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在已知点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 是否必不连续?举出适当的例子.
- 设函数 [tex=12.071x2.429]EPaISH7F+7OFqeEao9lVbY9M+geAOkEejYuk2YpDRrOpQz9YTdPtPGqZt8DVR9ycU9GTKtdo3Jd2VZIC9SROX+rW6U9uRk7t3RjrabN8epo=[/tex] 应当怎样选择 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],使得 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续.