求内接于半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球有最大体积的长方体。
举一反三
- 在半径为 [tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex] 的球内嵌入有最大体积的圆柱体.
- 求半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的球中具有最大体积的内接长方体。
- 在半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的半球内,求体积最大的内接长方体的边长.
- 求内接于半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]、圆心角为[tex=1.143x1.286]MC1XsYmMZOUQBFxDpyQseQ==[/tex]的扇形的最大矩形,此矩形的一边与扇形平分角线平行;
- 一个半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球内有一个内接正圆锥体,问圆锥体的高和底半径成何比例时,圆锥体的体积最大?[img=155x154]178aae8625e73a4.png[/img]