• 2022-05-30
    [tex=1.143x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]求试 [tex=1.714x1.286]4QQ86u2nBQIgUrIT95C+QA==[/tex]式。
  • 解 无限长杆的热传导问题的解为[tex=22.429x2.714]5pDaUM/GsKANuYjdxUMxksZALWTqPUwuiIxEvZexxy+085crV0Zayd05IOLo/baRPaUW1DLX9MlIOp5JxUfruRKOppXEUCCP07uGnuC4d6u4Ak/BajLLb86p1WVDbq5Ggak5loPU8MbPj2J0TzNltc6P6jWWqtvz+oO2rgSGjhiGF5Yjv77JTo7XcW2RB4lV[/tex]交换积分顺序,对 [tex=0.571x1.0]Azh4iEJ0ve/iXkYqBzQH9w==[/tex]进行积分[tex=22.0x2.714]5pDaUM/GsKANuYjdxUMxksZALWTqPUwuiIxEvZexxy+085crV0Zayd05IOLo/baRPaUW1DLX9MlIOp5JxUfruRKOppXEUCCP07uGnuC4d6u4Ak/BajLLb86p1WVDbq5Ggak5loPU8MbPj2J0TzNltc6P6jWWqtvz+oO2rgSGjhjBLsEB8k405GejUHGzuRbD[/tex][tex=19.357x2.714]lOXllVPSAOO5I/wOByZTge4nBIM8lsFunVCSugfdRX+yFLXzk0/EsCvS9vHrJHe0nAP5mdJxjmokz02gtMOW/WtyQo+EponA0kTSRX2jpAJJGwbqwz6g7Sp791WC+/9vEB4nvaN42C0RWSu4NG6lRJp7FQq2fQrvDJKsXV8DwQQ=[/tex]其中积分[tex=12.0x2.714]KYDD1VVtyjGfkmVyl5f5vqCZQBxhkne+QOYZwluTEv+07MKQWy8sfFx9H4MMDB6JcXGJqDAq/rage06erqNkyrOB9SopKfdtDpO9V/WnyPw=[/tex][tex=21.571x3.357]aVrH2GX0CdmAyuxIEcBMHGs/RMc1yspLN+rcNUeT5WK3mQDGUNhaxnF+0d8hg5pp93AZLjW1vXp3UE0P5awSkjzyTrlP7iPj1LfOw8+cgN+jSTjEOnZD+6O6OhZxv2O+RcXsBEOxddqf1WE4ItlyMQRPQi3KFZ7xSxVa9THPIG1CXgwwzk7Zo8t4Qfnp3SEcMjOA7AnqlNE++uvbEBS8KsW0YmQcM+KFJWMPTEzMsNw=[/tex]令 [tex=8.143x2.714]wUjLeOawkRmmvEclamZ0Ucq/JIb8u9+Xr5FNA7Bic34xOrj7UkoQsDSodwaZoqWWRDRayi7rYWGcNqXTic2mNw==[/tex]则[tex=23.286x3.714]KYDD1VVtyjGfkmVyl5f5vqCZQBxhkne+QOYZwluTEv+07MKQWy8sfFx9H4MMDB6JcXGJqDAq/rage06erqNkyg5KCIqVDYbbt0wpdlzUhesPjXaUGBonqw+utTzRDKscSr96RNetJW3W5aqwoqnlQnwVqoHD4dfnLQBYmI/xtGlgukD/lKJMlMN9H2qwa0kEmNB20+mfDKb5qC0eP8DpATz42OKVWUjES+3URma7OSUDyvV6fEFTS/FAT8JEgAlX[/tex][tex=6.357x3.857]jZAfCPzZ0T43WuM+hjdXZcYoFlhgQ32xCKbDeQ2g4mBEBYl9R23KxYgNUInZbas0v3J1hS4lOlbisqJt4dFcQ79RCcO2BGw7arHwamKLQmp6KPLr7A3WcaXX/sawZC3m[/tex][tex=1.786x1.357]Pe+04FFEPUWcORSk+dNqbA==[/tex] 式代入 [tex=1.786x1.357]oFGoK8sTiMVSIcHqyDCuEw==[/tex]整理后即可得[tex=16.143x2.714]5pDaUM/GsKANuYjdxUMxkgGdLmTdnKHZD5rA60147GuQjcr7j2lklizvGxYlqBay3kMtt3eFjWH3RwatjvT3kwIvRCX+HxI90F/Dz+SwScTrFUqdGS3Ajfr3jmNdbadwP9rIIhCXJO18cawqDBzyw3b6NyqIo43O3Tg9U/7mEA8=[/tex]

    内容

    • 0

      假定货币需求函数为[tex=6.0x1.214]9xhZcpM3dUfEG+XylHUmsA==[/tex]。要求:若货币供给为[tex=1.857x1.286]wWCfw7dNrdK3IIn1XGD/QA==[/tex]再画一条[tex=1.714x1.286]XA2xoFS0sZALiqNYEjJ/oQ==[/tex]曲线,这条[tex=1.714x1.286]XA2xoFS0sZALiqNYEjJ/oQ==[/tex]曲线与[tex=1.286x1.286]KRbk1D6xUJl1+en7PeFt/g==[/tex]中的[tex=1.714x1.286]XA2xoFS0sZALiqNYEjJ/oQ==[/tex]曲线相比有什么不同?

    • 1

      设  [tex=12.0x2.643]NP3g81S/AFoueakj54ygFUIsDMzWUBL89fsWrvbri6jzEmMFSuXtamCLg4R5WftKEKFFa4FeXJQ3UDaHyh+cqA==[/tex],试求与 $X(z)$ 对应的因果序列 $x(n)$ 。

    • 2

      求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]

    • 3

      当X服从参数为[tex=0.643x1.0]f9ECb56a0KLfwkSKv7TvaQ==[/tex]的指数分布时,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]分位数及中位数.

    • 4

      对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]