设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上线性变换全体组成的向量空间的维数为
未知类型:{'options': ['[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '[tex=4.214x2.357]IUzNW3ibLr/OWaHCXAUbVLoT+759jmG7AZpDREjIMyU=[/tex]', '[tex=1.0x1.214]uiEuUzx4dMJYCyEEsqGEJw==[/tex]', '无穷大'], 'type': 102}
未知类型:{'options': ['[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '[tex=4.214x2.357]IUzNW3ibLr/OWaHCXAUbVLoT+759jmG7AZpDREjIMyU=[/tex]', '[tex=1.0x1.214]uiEuUzx4dMJYCyEEsqGEJw==[/tex]', '无穷大'], 'type': 102}
举一反三
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上所有交错型组成的线性空间的维数为[input=type:blank,size:6][/input]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维内积空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, 求证: [tex=7.429x1.5]Hxr+WAd0pdX8wRxoSXYGR3do9fEtDlh1/HAxD3DUXhGMjAefuLUvVoRdEHJyjLhXFlycXQ3p2whuN5XqXwrP+wAqj43ADjVBq9YjRHMLZEY=[/tex]
- 设[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,且 [tex=6.571x1.071]ZyqBa4JfWRPKusGwA3PAKqa8sjPrakad+dZGuQBTVus=[/tex].证明:[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中有不止一个余子空间。