• 2022-05-29
    设向量β可由向量组α1,α2,…,αs线性表出,但β不能由向量组α1,α2,…,αs-1线性表出.证明:秩(α1,α2,…,αs-1,αs)=秩(α1,α2,…,αs-1,β).
  • 证:①向量β可由向量组α1,α2,…,αs线性表出⇒R(α1,α2,…,αs-1,αs)=R(α1,α2,…,αs-1,αs,β),所以,R(α1,α2,…,αs-1,αs)=R(α1,α2,…,αs-1,αs,β)≥R(α1,α2,…...

    举一反三

    内容

    • 0

      设α1,α2,…,αs与β1,β2,…,βt为两个n维向量组,且R(α1,α2,…,αs)=R(β1,β2,…,βt)=r,则______。 A: 两向量组等价 B: R(α1,α2,…,αs,β1,β2,…,βt)=r C: 当α1,α2,…,αs被β1,β2,…,βt)线性表出时,β1,β2,…,βt)也被α1,α2,…,αs线性表出。 D: 当s=t时,两向量组等价。

    • 1

      设α1,α2,…,αs,β是线性相关的n维向量组,则( ). A: β可由α1,α2,…,αs线性表示 B: β不可由α1,α2,…,αs线性表示 C: 若秩r(α1,α2,…,αs,β)=s,则β可由α1,α2,…,αs线性表示 D: 若α1,α2,…,αs线性无关,则β可由α1,α2…,αs线性表示

    • 2

      已知n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt A: 如秩r(Ⅰ)=r(Ⅱ),则(Ⅰ)与(Ⅱ)向量组等价. B: 如秩r(Ⅰ)<r(Ⅱ),则(Ⅰ)可由(Ⅱ)线性表出. C: 如秩r(Ⅰ,Ⅱ)=r(Ⅱ),则(Ⅰ)可由(Ⅱ)线性表出. D: 如秩r(Ⅰ,Ⅱ)=r(Ⅱ),则(Ⅱ)可由(Ⅰ)线性表出.

    • 3

      设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则(  )

    • 4

      设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则______. A: 两个向量组等价 B: r(α1,α2,…,αm,β1,β2,…,βs)=r C: 若向量组α1,α2,…,αm可由向量组β1,β2,…,βs线性表示,则两向量组等价 D: 两向量组构成的矩阵等价