若f(x)在点x[sub]0[/]连续,则( )
A: tan[f(x)]在点x0连续
B: |f'(x)|在点x0连续
C: |f(x)|在点x0连续
D: f[f(x)]在点x0连续
A: tan[f(x)]在点x0连续
B: |f'(x)|在点x0连续
C: |f(x)|在点x0连续
D: f[f(x)]在点x0连续
举一反三
- 下列结论中正确的是(). A: 若y=f(x)在x<sub>0</sub>点连续,则f′(x<sub>0</sub>)存在 B: 若f′(x<sub>0</sub>)存在,则y=f(x)在x<sub>0</sub>点连续 C: 若f′(x<sub>0</sub>)存在,则f′(x)在x<sub>0</sub>点连续 D: 若f′(x<sub>0</sub>)存在,则y=f(x)在x<sub>0</sub>点的某邻域内一定连续
- 函数y=f(x)有驻点x=x[sub]0[/],则( )不成立. A: f(x)在点x<sub>0</sub>处连续 B: f(x)在点x<sub>0</sub>处可导 C: f(x)在点x<sub>0</sub>处有极值 D: 点(x<sub>0</sub>,f(x<sub>0</sub>))处曲线的切线平行于x轴
- 设f(x)在(a,b)内有连续的二阶导数,x[sub]0[/]∈(a,b),若f(x)满足( ),则f(x)在x[sub]0[/]取到极小值。 A: f'(x<sub>0</sub>)>0,f''(x<sub>0</sub>)=0 B: f'(x<sub>0</sub>)<0,f''(x<sub>0</sub>)=0 C: F'(x<sub>0</sub>)=0,f''(x<sub>0</sub>)>0 D: f'(x<sub>0</sub>)=0,f''(x<sub>0</sub>)<0
- 下列结论错误的是( ). A: 如果函数f(x)在点x=x<sub>0</sub>处不可导,则f(x)在点x=x<sub>0</sub>处也可能连续 B: 如果函数f(x)在点x=x<sub>0</sub>处可导,则f(x)在点x=x<sub>0</sub>处连续 C: 如果函数f(x)在点x=x<sub>0</sub>处不连续,则f(x)在点x=x<sub>0</sub>处不可导 D: 如果函数f(x)在点x=x<sub>0</sub>处连续,则f(x)在点x=x<sub>0</sub>处可导.
- 函数y=f(x)在点x=x[sub]0[/]处取得极小值,则必有( ). A: f''(x<sub>0</sub>)<0 B: f'(x<sub>0</sub>)>0 C: f'(x<sub>0</sub>)=0且f''(x<sub>0</sub>)>0 D: f'(x<sub>0</sub>)=0或f'(x<sub>0</sub>)不存在