当[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]是一个复合命题时,证明[tex=3.5x1.429]wUWdOx6IOmyyHN02QDK/p+DmDHFkNGza6UfiOnOaMg4=[/tex]
举一反三
- 用命题变量[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]、[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]、[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]和[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]构造一个复合命题,使它在这些命题变量中恰有三个为真时取真值,其他情况下为假。
- 已知[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex],[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex],[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]这4个人中有且仅有两个人参加围棋比赛,但必须满足下列4个条件:[br][/br](1)[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]仅一个人参加;(2)若[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]参加,则[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]也参加;(3)[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]至多参加一个人;(4)若[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]不参加,则[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]也不参加。应派哪两个人去参加比赛?
- 证明两个有理数的和是有理数。(注意如果这里要包含隐含量词,我们要证明的定理就是:“对于每个实数[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]和每个实数[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex],如果[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]和[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]是有理数,则[tex=1.714x1.071]Hl/jgmhaYDAtk3SA4me73w==[/tex]是有理数。)
- 设 [tex=5.714x1.214]lZfcRDOHT43TyAqQoLZlW8UiH0GFLj08pVPZaN1Dbiw=[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的 [tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex] 个非平凡的子空间,证明 : [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 中至少有一向量不属于[tex=5.357x1.214]lZfcRDOHT43TyAqQoLZlW6NOFio2Pds294Bv4ocg9JA=[/tex]中任何一个.
- [tex=0.357x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]区、[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]区元素原子都是先失去最外层[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]电子得到相应的离子。