设[tex=0.857x1.0]3dL6VJHKHZnugLK8MQRDDg==[/tex],[tex=0.857x1.214]yf2WhC6dow23mEHpBHcQLQ==[/tex]为命题,复合命题“如果[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]则[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex]”称为[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]与[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex]的______,记做______.
举一反三
- 试给出连杆-滑项机构中滑块推力[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex]与主动推力[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]之间的关系。[img=904x451]1799ecf2394747d.png[/img]
- 点 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 沿一直线由南向北运动,而点[tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 沿一直线追[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 在开始时刻 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex]在[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 正东,距离 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 两个单位,在追赶过程中, [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 点运动方向始终朝向[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 又已知 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex]点速率与 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 点速率之比为。试选择适当的坐标系,求出 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 点运动的轨迹方程。
- 设命题[tex=0.857x1.0]3dL6VJHKHZnugLK8MQRDDg==[/tex],[tex=0.857x1.214]yf2WhC6dow23mEHpBHcQLQ==[/tex]的真值为[tex=0.857x1.0]cQ2QkRLJi5pKFKQDvHmuZA==[/tex],命题[tex=0.786x1.0]59uVln8a2zRyv0n5hgPyQg==[/tex],[tex=0.643x1.0]+OB72RrwSEz+ypUFb12e3w==[/tex]的真值为[tex=0.786x1.0]d3WVXmrW0zRcuZAT3Ol1jQ==[/tex],求公式[tex=7.929x1.357]GmI1mwsK/vDwgIIPEIpMc36WSCUm8d4TFqN9nJ8Qd0DZWh21RQnLYcm91WzARjzJ[/tex]的真值.
- 若可逆方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征向量[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]对应的特征值是[tex=3.786x1.357]GzOL+ZLC5kyx0lJybBg5WQYZymOITnFdzdYibtN9pM8=[/tex],则[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]也是[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex]的特征向量,且与[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]对应的[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex]的特征值[input=type:blank,size:4][/input].
- 令[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是所有[tex=2.429x1.071]fYRl1cpBZV0k8ULAvI7FIg==[/tex]上三角非奇异复方阵的集合,[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]是主对角线上的元都是1的上三角方阵的集合,运算定义为矩阵的乘法.试证[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]和[tex=0.857x1.0]zkVuLx/VQ1XnCvAv90B7dQ==[/tex]都是群.