如果在曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的球面映射下一族渐近曲线 的 每一 条都对应为大圆,则 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 是斜直纹曲面,试证之。
举一反三
- 令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 直接证明:若在可展曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]上存在两个不同的单参数直线族, 则[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]必定是平面.
- 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]分别是 曲 线[tex=4.0x1.357]TRxrT+fJZgGH6o82kNImXvprENVSesWwclyQ9tDT6Q8sCHyzpNWY0WRXLRMzgZRl[/tex] 为自然参数)的(1)切线, (2 ) 主法线, (3)付法线形成的曲面,求曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的第一二次形式。
- 设 [tex=4.0x1.357]zg93hysKV7tYatsom61VnQ==[/tex] 是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的一个参数表示, 证明: 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的参数曲线 [tex=1.357x0.786]M6ehz/katz5+UuZLyv9XuA==[/tex] 常数和 [tex=1.286x0.786]iCVy1X1XDEZ3BhCDPkCybw==[/tex] 常数是曲率线的充要条件是 [tex=4.0x1.0]M/edCBd3V8iB/X7pCUIRXw==[/tex]
- 设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是任意非空集合,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是所有[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]到[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的所有双射组成的集合,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]关于映射的复合运算[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]构成群。